中華民國第60屆中小學科學展覽會作品說明書

高級中等學校組 物理與天文學科

佳作

051807

電來水走——探討電場作用時水珠的電濕潤現象

學校名稱:臺北市立第一女子高級中學

作者:

指導老師:

高二 胡廷瑄

簡麗賢

高二 陳佳萱

關鍵詞:電濕潤、表面張力、電場

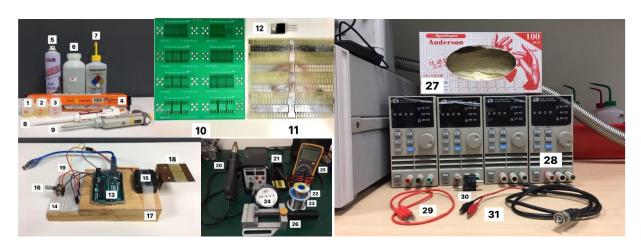
摘要

本研究透過自製電路板及實驗裝置,結合程式碼控制電場,探討不同電濕潤的裝置、水量及電場與水珠運動速度的關係,並探究使水珠運動速率最大化的條件。

研究發現水珠運動方向與所加電場方向相同,且增強電場、增加水量、減小電極間距、降低疏水材料的表面粗糙程度、先行分離水珠內部正負離子以及在 3200 μ m 以下增加電極寬度,皆使水珠運動速率變快。

透過探討影響水珠移動速率的變因,可提升電濕潤顯示器單位時間內的幀數(張數),亦即流暢度,並期盼將此研究結果應用於各式表面的自我清潔系統中。

壹、 研究動機


每次學校打掃時間,就要爬上窗台擦拭玻璃,但經過一段時間又會蒙上一層灰塵與污垢。若玻璃能自動清潔該有多好!

我們上網查詢「玻璃自淨」,搜尋到一篇「Smart Self-Cleaning Cover Glass For Automotive Miniature Cameras」,文中提及「電濕潤」可使玻璃上的水珠移動的物理現象,達到玻璃自我清潔的效果。為更進一步瞭解電濕潤,我們設計實驗,探討其運動原理,並以電腦程式輔助探究使水珠運動速度最大化的條件,希望能更深入認識電濕潤的原理與技術!

貳、研究目的

- 一、探討讓水珠移動最快的裝置
- 二、探討電場如何影響水珠移動
- 三、探討不同水量、電極寬度、電極間距和疏水材料,能使水珠運動的最小驅動電壓
- 四、探討不同供電方式與能使水珠流暢運動的最短供電週期的關係

參、研究設備及器材

圖一、實驗器材及編號

表一、實驗器材及編號

編號	名稱	型號/成分	用途			
1	橄欖油	N/A				
2	油炸專用油	OAL22972				
3	矽油	N/A	作為不同材質的疏水層以供比較			
4	保鮮膜	南亞保鮮膜				
5	防水噴霧	貓頭鷹鞋面防水劑				
6	蒸餾水	N/A	作為電濕潤實驗移動的液滴			
7	Isopropanol	(СН3)2СНОН	清洗電路板			
8	微量吸量管	Eppendorf Research plus(20-200 µl)	吸取液狀疏水層,固定疏水層厚度			
9	微量吸量管	Thermo F1 (1-10 µI)	吸取溶液,固定液滴體積			
10	電路板 (1)	自行設計	操作於電濕潤實驗			
11	電路板 (2)	自行設計				
12	Mosfet (N-Channel)	IRF740	作為供電開關			
13	Arduino(板+USB 連 接頭)	Arduino Uno	 寫入程式碼以可變電阻控制液滴 在不同疏水層上的滑動角實驗裝置的傾斜角度 寫入程式碼以電晶體為電壓開關控制液滴運動 			
14	麵包板	N/A	搭建電路			
15	馬達	N/A				
16	可變電阻	B-type $10 \mathrm{K}\Omega$, 16φ	組成水滴在不同疏水層上的滑動角			
17	木板	N/A	實驗的裝置			
18	鐵架	N/A				

編號	名稱	型號/成分	用途
19	杜邦線	40Pin 1046A-20	1. 在麵包板上連接電路
17		101 III 10 1011 20	2. 焊接於自行設計的電路板上
20	熱風槍	HANDO 898D+	
21	焊槍	HANDO FX-888D	 將杜邦線焊接於自行設計的電路板上
22	吸錫帶	CP-20B (寬 2.0mm)	附位和線件按照日门或可可电路版工
23	錫線	WU-4 (寬 0.6mm)	
24	單蕊線	N/A	在麵包板上連接電路
25	三用電錶	FLUKE 17B+	檢測電壓、電流、電阻等數值
26	虎鉗	N/A	固定自行設計的電路板
27	乳膠手套	N/A	隔離汙染,保持實驗精準度
28	直流電源供應器	IT6720	
29	香蕉-香蕉(線)	N/A	
30	BNC 母頭-香蕉	N/A	 使數台直流電源供應器串聯輸出電壓
	(接頭)	1 11 1 1	
31	BNC 公頭-鱷魚夾 (線)	N/A	
32	接觸角量測儀	LSA60	計算液滴在不同疏水層上的接觸角
33	EAGLE(軟體)	N/A	設計電路板
34	Arduino IDE(軟體)	N/A	 以可變電阻控制水滴在不同疏水 層的滑動角實驗裝置的傾斜角度 以電晶體作為電壓開關控制水滴 運動
35	Geogebra(軟體)	N/A	計算液滴在不同疏水層上的滑動角
36	Fritzing(軟體)	N/A	繪製 Arduino 的電路圖

肆、研究方法

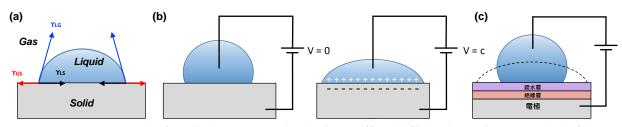
一、 原理介紹

圖二(a)為濕潤的力平衡模型,(b)為典型封閉電濕潤裝置結構及電濕潤驅動方式的示意 圖。於此電濕潤裝置中,其包含金屬電極、金屬導線、電解質溶液與直流電源。若利用金屬 導線對液珠與電極施加一偏壓,則電極表面將聚集電洞,並吸引液珠中電子而形成電雙層 (electrical double layer),則其電極與液珠界面的表面張力與壓力的關係,可用 Lippmann 方程 式表述為(1):

$$\sigma_{SL} = \sigma_{SL,0} - \frac{1}{2}C_H V^2 \tag{1}$$

其中, $\sigma_{SL,0}$ 為未施加電壓時電極與液珠界面的表面張力, C_H 為電雙層電容由液體的介電常數(permittivity)與接觸面積所決定,V為偏壓大小。

若將上式代入濕潤理論(wetting theory)中著名的楊氏(Young)方程式(2),則可得平衡接觸角與電壓的關係式為利普曼-楊氏(Lippmann-Young)方程式(3):


$$\gamma_{SV} - \gamma_{SL} = \gamma_{LV} \cos \theta_0 \tag{2}$$

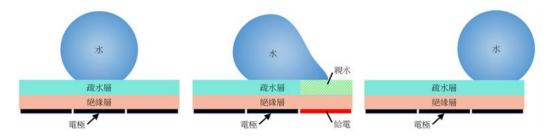
$$\cos\theta_e = \cos\theta_0 + \frac{1}{2\sigma_{LG}}C_H V^2 \tag{3}$$

其中, σ_{LG} 為周遭介質(通常為氣體)與液體的表面張力。

然而,電極與液珠直接接觸的電濕潤,其電雙層厚度通常只有幾奈米到幾十奈米,因此常因過大的偏壓而擊穿,發生電解反應,造成電濕潤操作時無法使用太高的電壓,也無法影響液珠接觸角,甚至無法移動與分離液珠,影響電濕潤的應用與發展甚鉅。

為克服上述問題,學者提出介電濕潤(electro-wetting on dielectric, EWOD),如圖二(c)所

圖二、(a) 濕潤問題之力平衡模型、(b) 典型電濕潤裝置結構組成及電濕潤驅動方式之示 意圖及(c)介電濕潤結構組成。


示,其透過在電極與液珠間添加絕緣材料,達到類似電雙層的效果,且絕緣材料厚度通常可設計在一微米至數十微米之間,因此可有效避免發生擊穿現象,亦可施加較高的操作電壓對液珠產生較大的影響。由於添加絕緣材料,偏壓造成的靜電能僅有一部份改變固液界面的表面張力,且液珠的接觸表面已非電極,式(3)不再適用。考慮添加絕緣材料,可將利普曼方程式與利普曼-楊氏方程式修正為式(4)與(5):

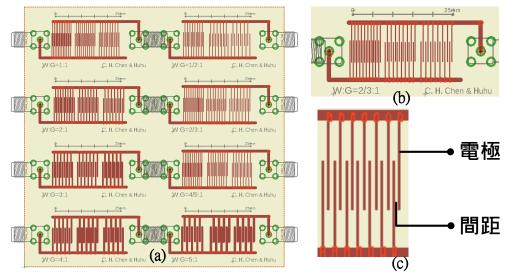
$$\sigma_{SL} = \sigma_{SL,0} - \frac{1}{2} \frac{\varepsilon}{d} V^2 \tag{4}$$

$$\cos\theta_e = \cos\theta_0 + \frac{\varepsilon}{2d\sigma_{LG}}V^2 \tag{5}$$

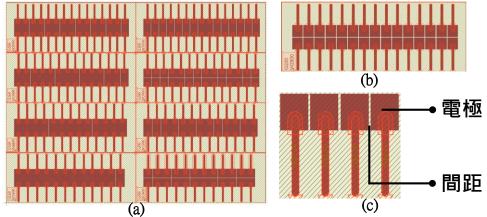
其中,d為絕緣層厚度、 ϵ 為絕緣材料的介電係數。值得注意的是,此處 σ_{LG} 為周遭介質 與絕緣材料間的表面張力;式(5)右邊第二項為電濕潤係數(coefficient of electro-wetting, η_E), 常用於評估靜電能與界面表面張力的相對大小。

二、實驗一:設計、製作及探討使水珠移動最順暢的裝置

圖三、介電濕潤裝置由下而上包含橫向排列的電極、絕緣層及疏水層,水珠則滴於疏水層上方。透過對電極 施加一偏壓,可使該電極上方的疏水層部分區域變得親水,使水珠產生形變。透過不斷形變,可使水珠運動。


圖三所示為設計的介電濕潤裝置,以橫向電場為動力,促使水珠橫向移動,並由**電** 極、絕緣層、疏水層構成,因此以下裝置的架設主要分成這三個方向進行探討。

(一) 電極——提供電場使水珠運動


如圖四(a)所示,使用電路板佈局軟體(EAGLE)設計電路板,再送廠製作。

- 1. 初版 (實體如圖一(10)所示,表層舖有綠色防焊層,為一絕緣材質)
 - (1) 電路:奇數電極與偶數電極分別並聯,接至正負兩極。
 - (2) 電極寬度與間距:如圖四(a)所示,同一供電系統內的電極寬度(W)與電極

間距(G)的比例固定,共8組。如圖四(b)所示,同一供電系統內又分為3組,其中電極寬度以組為單位,由左而右等差增加,電極間距依固定比例,隨電極寬度增加而變化。

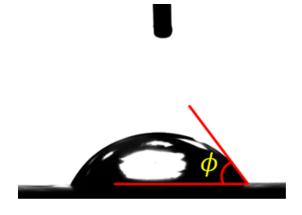
圖四、初版電路板製圖,其中深紅色部分為鋪錫的位置。(a)為完整電路板; (b)為其中一組供電系統;(c)為電極寬度與間距的示意圖。

圖五、第二版電路板製圖,其中深紅色部分為鋪錫的位置。(a)為完整電路板; (b)為其中一組電極寬度與間距比例;(c)為電極寬度與間距的示意圖。

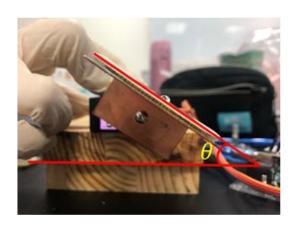
- (3) 實測結果:水珠無動於衷,位置與形狀皆無變化,此次實驗失敗。
- (4) 推測失敗原因:i. 絕緣層過厚,導致電場減弱。
 - ii. 電極過細,水珠橫跨數個電極,導致電場相互抵消。
- 2. 第二版 (實體如圖一(11)所示,表層金屬電極裸露)
 - (1) 電路:每個電極獨立供電,不侷限固定的供電方式,且增為上下兩排電極,使水珠能在多種軌道運動。
 - (2) 電極寬度與間距:如圖五(b),將電極寬度增加、間距縮小,推測能使電場

增強。

(3) 實測結果:水珠受電場影響而移動,因此後續皆以此電路板實驗。


(二) 絕緣層——避免偏壓過大而擊穿水珠,使其發生電解反應

比較防焊層(初版電路板的表層)、熱塑性自封薄膜(封口蠟膜, parafilm)和保鮮膜等絕緣材料:

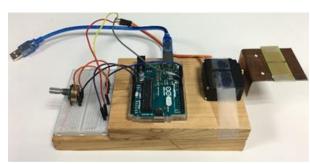

表二、絕緣層的優缺點比較

	優點	缺點
防焊層	表面平整、廠商代工	過厚、無法調整厚度
熱塑性自封薄膜	表面平整、服貼度高	具延展性造成厚薄不均
保鮮膜	厚度適中、服貼度高	具延展性造成厚薄不均

因保鮮膜厚度適中,不致過厚而削弱電場,且可透過不拉扯而直接覆蓋於電路 板上的方式,改善其具延展性的缺點。過程中不施加橫向的力而產生形變,所以能 統一每次實驗的絕緣層厚度,因此後續實驗皆採用保鮮膜作為絕緣層。

圖六、水珠接觸角 ϕ 為液體/空氣界面接觸固體表面的夾角,且由水珠接觸角大小可判斷其疏水程度。

圖七、水珠滑動角 θ 為水珠滑動瞬間,滑動面與水平面的夾角,且由水珠滑動角大小可判斷其表面粗糙程度。


(三)疏水層——易使水珠運動

比較防水噴霧、矽油、橄欖油、油炸專用油等四種材料,並以保鮮膜作為對照 組。在初步的實驗與觀察後,發現疏水層影響水珠移動的因素,主要分成接觸角與 滑動角,如圖六與圖七所示。

以下實驗分別以接觸角與滑動角兩種向度,比較與分析各疏水材料:

1. 水珠接觸角

- (1) 實驗目的:探討不同界面的疏水程度。
- (2) 實驗步驟:
 - i. 使用接觸角量測儀滴定固定水量於疏水層介面。
 - ii. 電腦分析影像,計算水珠與疏水層界面的接觸角。
- 2. 水珠滑動角 (如圖八所示)
 - (1) 實驗目的:探討不同界面的表面粗糙程度。
 - (2) 實驗步驟:
 - i. 在剪裁後電路板的背面畫上中線以利觀察,並包上保鮮膜。
 - ii. 將電路板黏於馬達上裝置好的金屬片上。
 - iii. 如圖九所示,寫入程式碼控制 arduino,利用可變電阻手動調整馬達轉速 與轉動角度。

圖八、滑動角實驗裝置

```
#include <Servo.h>
Servo myservo;
int r1_pin = 2;
int r1_val;

void setup() {
  myservo.attach(9);
}

void loop() {
  r1_val = analogRead(r1_pin);
  r1_val = map(r1_val, 0, 1023, 0, 160)
  myservo.write(r1_val);
  delay(15);
}
```

圖九、以可變電阻控制馬達的 Arduino 程式碼

- iv. 使用微量吸量管將水珠滴在中線上。
- v. 開始轉動馬達,同時採俯視與平視觀察水珠滑動情形。
- vi. 在滑動瞬間,馬達停止轉動,使手機與桌面垂直,鏡頭對齊水珠位置拍攝。
- vii. 將照片匯入 geogebra 軟體測量角度。

三、實驗二:

(一)實驗目的:

探討供電方式如何影響水珠移動

(二)實驗器材:

使用表一的老虎鉗、電路板、麵包板、pipette、保鮮膜、手套、矽油、油炸專用油、蒸餾水、杜邦線、香蕉-香蕉(線)、BNC 公頭-鱷魚夾(線)、BNC 母頭-香蕉(接頭)、直流電源供應器。

(三)實驗步驟:

- 1. 選取電路板上3個電極。
- 2. 使用微量吸量管取水 20 μ1, 並滴於中間電極。
- 3. 紀錄並分析以下 8 種供電方式,如表三與表四,水珠的形變與移動情形。

表三、不同供電方式的電壓(單位為 V)

	電極 1	電極 2	電極3
A	120	0	120
В	0	120	0
С	120	0	0
D	0	120	120

表四、不同供電方式的電壓(單位為 V)

	電極 1	電極2	電極3
A	-120	0	-120
В'	0	-120	0
C'	-120	0	0
D'	0	-120	-120

四、實驗三:

(一)實驗目的:

探討不同水珠質量、電極寬度、電極間距、疏水界面下,能使水珠運動的最小驅動電壓。(最小驅動電壓:水珠在3秒內觸及下一個電極最遠邊界的最小電壓)

(二)實驗器材:

使用表一的老虎鉗、電路板、麵包板、pipette、保鮮膜、手套、矽油、油炸專用油、蒸餾水、杜邦線、香蕉-香蕉(線)、BNC 公頭-鱷魚夾(線)、BNC 母頭-香蕉(接頭)、直流電源供應器。

(三)實驗步驟:

- 1.將杜邦線焊在電路板上。
- 2.包上保鮮膜。
- 3.使用微量吸量管分別取油炸專用油和矽油各20μ1,滴於電路板上並均勻塗抹。
- 4.連接電路。
- 5.使用微量吸量管分別取純水 $10\mu1$ 、 $15\mu1$ 、 $20\mu1$,滴於第一個電極上。
- 6.以 5V 為一單位,從 200V 開始向下遞減,並測量最小驅動電壓。

五、實驗四:

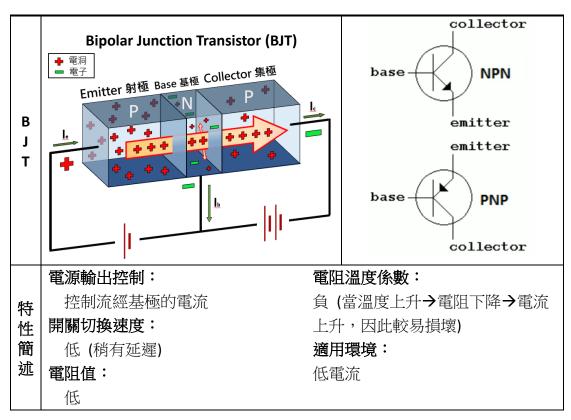
(一)實驗目的:

探討不同供電方式與能使水珠流暢運動的最短供電週期的關係。

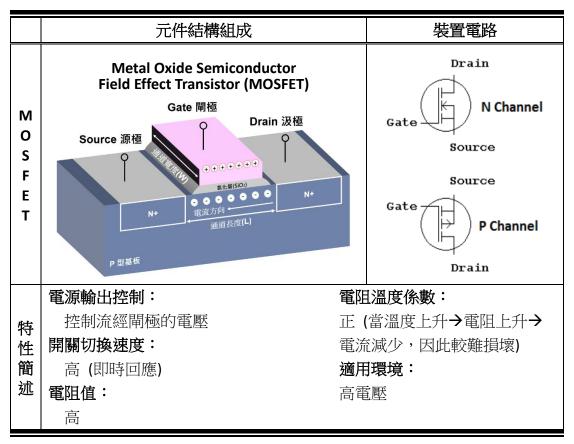
(供電週期:每一次切換電壓相隔的時間;最短供電週期:能使水珠在4格電極來回運動,且水珠運動速率最快的供電週期)

(二)實驗器材:

使用表一的老虎鉗、電路板、麵包板、Arduino板、電腦、pipette、保鮮膜、手套、矽油、油炸專用油、蒸餾水、杜邦線、香蕉-香蕉(線)、BNC 公頭-鱷魚夾(線)、BNC 母頭-香蕉(接頭)、直流電源供應器

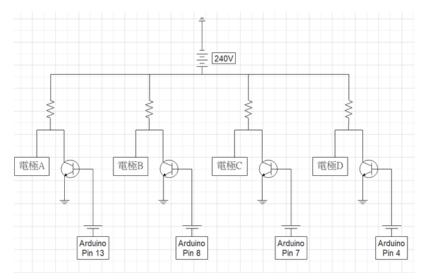

(三)實驗方法:

寫程式碼控制 arduino,供給基極與閘極 5V 的電壓,進而使電晶體導通或不導通,並藉由此開關控制各獨立電極是否接收高電壓。


(四)實驗步驟:

- 1. 選擇電晶體:
- a. 雙極性電晶體(BJT)

元件結構組成	裝置電路



b. 金屬氧化物半導體場效電晶體(MOSFET)

基於 MOSFET 的優點,並考量本研究利用高電壓使水珠移動,與 MOSFET 的適用環境契合,因此以下實驗均使用 MOSFET。

2. 設計電路:

圖十、架設電路圖,以4個 MOSFET 作為開關。

本實驗設計的電路使用四顆 MOSFET,透過 arduino 腳位 $4 \cdot 7 \cdot 8$ 與 13 提供的電壓,控制電晶體是否導通,並將其汲極連接 10^6 Ω 的電阻,若 MOSFET 不導通時,電極的電壓為高電壓 240V;導通時,則電流通過電阻,此時電極的電壓即為零。

3. 寫程式碼(共 4 種)控制 Arduino:

A. 推進式供電方式:

表五、不同供電方式各階段的電壓(單位為 V)

	電極 1	電極 2	電極 3	電極 4
第一階段	240	0	0	0
第二階段	240	240	0	0
第三階段	240	240	240	0
第四階段	0	0	0	240
第五階段	0	0	240	240
第六階段	0	240	240	240

B. 限定式供電方式:

表六、不同供電方式各階段的電壓(單位為 V)

	電極 1	電極 2	電極 3	電極 4
第一階段	240	0	240	240
第二階段	240	240	0	240
第三階段	240	240	240	0
第四階段	240	240	0	240
第五階段	240	0	240	240
第六階段	0	240	240	240

A'推進式供電方式且電荷先行分離:

表七、不同供電方式各階段的電壓(單位為 V)

	電極 1	電極 2	電極 3	電極 4
第一階段	240	240	240	240
第二階段	240	0	0	0
第三階段	240	240	0	0
第四階段	240	240	240	0
第五階段	0	0	0	240
第六階段	0	0	240	240
第七階段	0	240	240	240

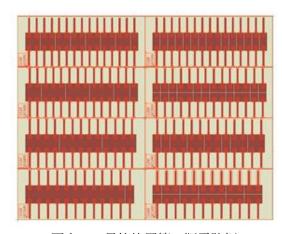
B'限定式供電方式且電荷先行分離:

表八、不同供電方式各階段的電壓(單位為 V)

	電極 1	電極 2	電極 3	電極 4
第一階段	240	240	240	240
第二階段	240	0	240	240
第三階段	240	240	0	240
第四階段	240	240	240	0
第五階段	240	240	0	240
第六階段	240	0	240	240
第七階段	0	240	240	240

- 4. 將杜邦線焊於電路板上並包上保鮮膜
- 5. 使用 pipette 取 20 µ1 油滴於電路板上並均勻塗抹
- 6. 架設電路
- 7. 使用 pipette 分別取 $10\mu1$ 、 $15\mu1$ 、 $20\mu1$ 純水,滴於第一個電極上
- 8. 以 0.5 秒為一單位,從 10 秒開始向下遞減並進行測量

伍、研究結果

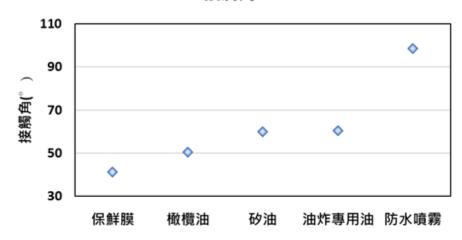

一、實驗一:設計及製作電濕潤裝置

(一)電極

最終使用第二版電路板(如圖十一)

(二)絕緣層

最終使用保鮮膜


圖十一、最終使用第二版電路板

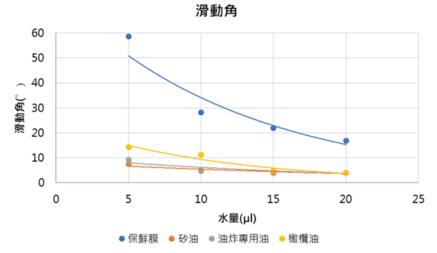
(三)疏水層

1.水珠接觸角

數據分析:

圖十二、疏水程度由大至小依序為:防水噴霧、油炸專用油、矽油、橄欖油、保鮮膜(對照組)

2.水珠滑動角


(1)實驗數據:

因裝置最小轉動角度為 4°,故小於 4°者皆記為 4°。

表九、各疏水材料的水珠滑動角(單位為度),其中防水噴霧均無滑動,因此標示為×。

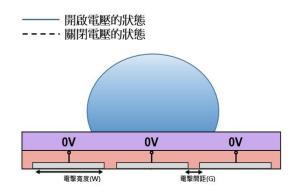
	5µ1	10,µ1	15 µ 1	20,µ1
	56.91	28.76	21.81	18.04
// 224 1 11	57.69	29.81	22.51	17.72
保鮮膜	61.50	28.97	21.49	14.69
	58.7(平均值)	29.18(平均值)	21.93(平均值)	16.82(平均值)
	7.81	4	4	4
Σ/χ.\ ./.	7.52	4.49	4	4
砂油	6.91	4.87	4	4
	7.41(平均值)	4.45(平均值)	4(平均值)	4(平均值)

	9.47	5.5	5.16	4
油炸專用油	8.75	4.48	4	4
/四八十号/17/四	9.17	5.45	4.82	4
	9.13(平均值)	5.14(平均值)	4.66(平均值)	4(平均值)
	13.68	9.46	4.33	4
橄欖油	15.36	9.98	4.53	4
/収/見/田	13.24	10.60	5.19	4
	14.09(平均值)	10.01(平均值)	4.68(平均值)	4(平均值)
	×	×	×	×
防水噴霧	×	×	×	×
<i> ソノ</i> ハ"貝 <i>務</i>	×	×	×	×
	〉(平均值)	〉(平均值)	〉(平均值)	〉(平均值)

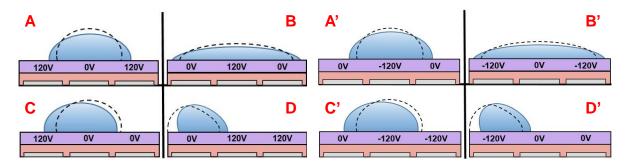
圖十三、滑動角大小由小至大應為矽油、油炸專用油、橄欖油、保鮮

膜、防水噴霧,其中防水噴霧不滑動。

綜合以上接觸角與滑動角兩種向度考量,應採用接觸角較大且滑動角較小的疏水材料,防水噴霧的疏水程度雖最高,但幾乎無法滑動,並不適合作為此裝置的疏水材料。油炸專用油與矽油的接觸角大小排名分別為第二和第三,同時滑動角大小排名分別為第二和第一,且角度都十分相近,因此得到油炸專用油與矽油為最佳疏水層的材料。


二、實驗二:探討供電方式如何影響水珠移動

結果分析如圖十四、十五:


由上圖十四、十五可得:

- (一)水珠在 B、B'往兩側攤開的幅度比在 A、A'大。
- (二)水珠在 $D \cdot D'$ 的移動幅度比在 $C \cdot C'$ 大。

由(一)、(二)得知,水珠傾向往電位相對低的電極移動,亦即水珠運動方向與電場方向相同。

圖十四、為本實驗的實驗裝置,也是未供電時水珠位置和形狀的示意圖。

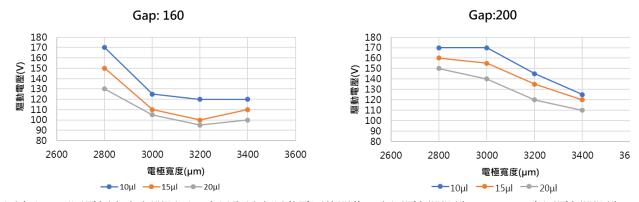
圖十五、左圖為 A、B、C、D 四種由 120V 與 0V 組成的不同供電方式,右圖為 A'、B'、C'、D'四種由-120V 與 0V 組成的不同供電方式,與其分別對應到的水珠形變示意圖。其中藍色塗色區塊為供電時水珠的形狀, 虛線區塊為關閉電源後水珠的形狀。

- (三)停止供電後,A、A'上的水珠會退回初始位置,B、B'則否。
- (四)停止供電後,C、C'上的水珠會退回初始位置,D、D'則否。

由(三)、(四)得知,水珠最後傾向停留在供電時,電位相對較低的電極上。

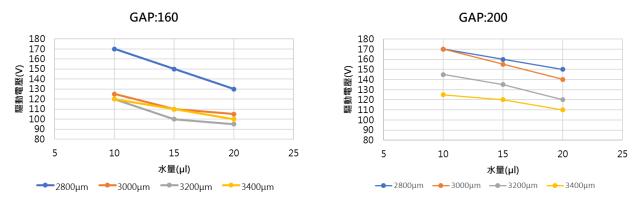
三、實驗三:探討不同水珠質量、電極寬度、電極間距、疏水介面下,能使水珠運動的最小 驅動電壓

a.油炸專用油


(一)實驗數據:

表十、疏水層為油炸專用油時,不同水量、電極寬度與間距的最小驅動電壓(單位為 V)

52 FE HIDE	水量	電極寬度:	電極寬度:	電極寬度:	電極寬度:
電極間距 		2800 μ m	3000 μ m	3200 μ m	3400 μ m
	10 μ1	169	124	120	118
160 μ m	15 μ1	148	109	98	110
	20 μ1	127	103	95	97
	10 μ1	170	167	143	123
200 μ m	15 μ1	157	154	132	118
	20 μ1	148	138	117	109


(二)數據分析:

- 1.在不同電極寬度與間距下,水量對最小驅動電壓的影響。
- (1)由圖十六得到,水量越大,驅動電壓越小。
- (2)比較圖十六中左圖和右圖,發現電極間距較小的 $160\,\mu\,\mathrm{m}$,整體驅動電壓較電極間 距較大的 $200\,\mu\,\mathrm{m}$ 小。

圖十六、不同電極寬度和間距下,水量與最小驅動電壓的關係。左圖電極間距為 $160\,\mu\,\mathrm{m}$,右圖電極間距為 $200\,\mu\,\mathrm{m}$ 。

2.在不同水量與電極間距下,電極寬度與最小驅動電壓的關係。

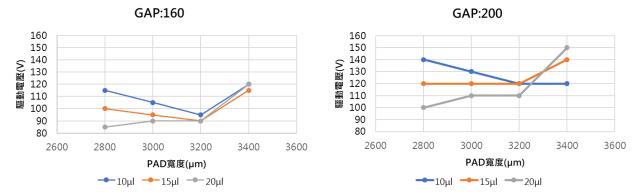
圖十七、不同水量下,電極寬度和間距與最小驅動電壓的關係。左圖電極間距為 $160\,\mu\,\mathrm{m}$,右圖電極間距為 $200\,\mu\,\mathrm{m}$ 。

- (1)由圖十七得到,電極寬度越大,驅動電壓越小。圖十七左圖中,推測電極寬度 3400 μ m 的最小驅動電壓應為實驗誤差。
- (2)比較圖十七中左圖和右圖,發現電極間距較小的 $160\,\mu\,\mathrm{m}$,整體驅動電壓較電極間 距較大的 $200\,\mu\,\mathrm{m}$ 小。

b.矽油

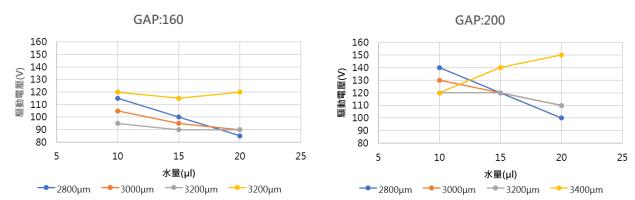
(一)實驗數據:

表十一、疏水層為矽油時,不同水量、電極寬度與間距的最小驅動電壓(單位為 V)


52 ASC 11 DC	水量	電極寬度:	電極寬度:	電極寬度:	電極寬度:
電極間距		$2800\mu\mathrm{m}$	3000 μ m	3200 μ m	3400 μ m
	10 μ1	115	105	95	120
160 μ m	15 μ1	100	95	90	115
	20 μ1	85	90	90	120
	10 μ1	139	130	118	120
200 μ m	15 μ1	118	119	117	137
	20 μ1	99	108	109	148

(二)數據分析:

- 1.在不同電極寬度與間距下,水量對最小驅動電壓的影響。
- (1)由圖十八得到,水量較小 $10 \mu 1$ 在電極寬度小於 3200μ m 時,最小驅動電壓持續下降;水量 $15 \mu 1$ 在電極寬度小於 3200μ m 時,最小驅動電壓也呈現下降的趨勢,較水量 10μ 平緩,兩者在電極寬度 3400μ m 卻變為上升的趨勢;水量 $20 \mu 1$ 的最小驅動電壓則持續上升,而在電極寬度 3200μ m 到 3400μ m 間急速上升。


由上述可推測電極寬度 3200 μ m 為一轉折點,亦即在電極寬度為 3200 μ m 時,應 出現最小驅動電壓的最低值。

(2)比較圖十八中左圖和右圖,發現電極間距較小的 $160 \, \mu \, \text{m}$,整體驅動電壓較電極間 距較大的 $200 \, \mu \, \text{m}$ 小。

圖十八、不同電極寬度和間距下,水量與最小驅動電壓的關係。左圖電極間距為 $160\,\mu\,\mathrm{m}$,右圖電極間距為 $200\,\mu\,\mathrm{m}$ 。

2.在不同水量與電極間距下,電極寬度與最小驅動電壓的關係。

圖十九、不同水量下,電極寬度和間距與最小驅動電壓的關係。左圖電極間距為 $160\,\mu\,\mathrm{m}$,右圖電極間距為 $200\,\mu\,\mathrm{m}$ 。

- (1)由圖十九得到,電極寬度 2800 μ m、3000 μ m、3200 μ m 的最小驅動電壓呈下降趨勢,且由寬度小到大逐漸變得平緩;電極寬度 3400 μ m 的驅動電壓則呈現上升的趨勢。若討論斜率,此 4 種電極寬度由小而大的斜率逐漸增加,而 3200 μ m 到 3400 μ m 則是斜率正負切換處,因此也可視 3200 μ m 為一轉折點。
- (2)比較圖十九中左圖和右圖,發現電極間距較小的 160 μ m,整體最小驅動電壓較電 極間距較大的 200 μ m 小。

綜合以上結果分析,比較操縱變因,疏水材料矽油、水量 20 μ 1、電極寬度 2800 μ m 和電極間距 160 μ m 的組合最佳。

四、實驗四:探討不同供電方式與能使水珠流暢運動的最短供電週期的關係。

(一)實驗數據:

表十二、不同供電方式下,使水珠流暢運動的最短供電週期(單位為秒)

	第一次	第二次	第三次	平均
A	1.3	1.2	1.3	1.27
В	1.4	1.5	1.5	1.47
A'	0.7	0.7	0.6	0.67
B'	0.8	0.9	0.8	0.83

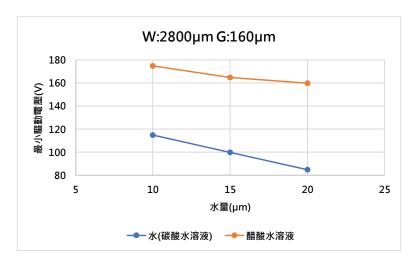
(二)數據分析(分別比較 A-B 與 A'-B'):

- A與A'的最短供電週期均較B與B'的最短供電週期短。
 由上述可推測原因為A與A'的供電方式產生的電場方向,因均相同故可疊加;
 B與B'則同時產生不同方向的電場而出現部分抵消。
- 2. A'與B'的最短供電週期均較A與B的最短供電週期短。

由上述可推測原因為 A'與 B'起初皆為+240V 時,負電荷已移至水珠最底層,亦即最靠近電極,當電場產生時,負電荷受到電場作用幾乎不移動,因此水珠僅因正電荷受到電場作用而移動。

陸、討論

一、討論供電方式如何影響水珠移動的結果


(一) 討論水珠向負極形變幅度,大於向正極形變幅度的影響因子。

1. 空氣中自由電子:

由於空氣中的負電荷向正電極靠近,導致正電極的電壓比施加的小,因此具有比較小的靜電力,攤開的幅度亦較小。

2. 離子遷移速率:

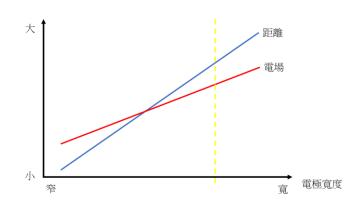
從化學離子遷移速率的觀點,一般自來水,或是擺放超過半天的蒸餾水,都會有二氧化碳溶於其中,形成 ph 值約為 6 的碳酸水溶液,其中會解離出帶正電的氫離子與帶負電的碳酸氫根。據此,我們推測在此溶液中,氫離子的遷移速率為碳酸氫根的幾萬倍,因而造成水珠向負極形變幅度,大於向正極形變幅度的現象。因此我們配製 ph 值同樣為 6,且在水中解離出氫離子與醋酸根的醋酸水溶液,在相同疏水層、電極寬度與間距的條件下,比較最小驅動電壓。已知其中氫離子的遷移速率相同,而醋酸根離子的遷移速率較碳酸氫根離子慢,因此,若影響其形變差距的原因為遷移速率,則醋酸水溶液的最小驅動電壓會較碳酸水溶液大。實驗結果如圖二十五所示:

圖二十五、醋酸水溶液的最小驅動電壓較碳酸水溶液大。初步證明,離子遷移速率將影響水 珠向正負極形變幅度。

(二) 關閉電壓後水珠的回復幅度

根據實驗(一)的結果,當水珠往相對高電位移動,關閉電壓後,水珠會退回初始位置;當水珠往相對低電位移動,關閉電壓後,水珠不退回初始位置,而傾向停留於形變後的位置。

原理分析:


設水珠原來體積為 V_1 ,水珠、周圍空氣與接觸面的邊界分力呈力平衡,直到水珠 體積增加至 V_2 時會突然溢出,而在水珠溢出瞬間的接觸角稱為**前進接觸角**。此時向外 溢出的水因失去正向力支撐,受到重力作用而產生加速度,使水珠受到一向外的力, 並令其水平分力為 F_1 ,向四周攤開。

由上述討論一中(一)的假設原因「水珠往相對高電位移動的力小於水珠往相對低電位移動的力」,我們推測此現象發生的原因為:水珠往相對高電位移動的電場作用力 \leq F_1 ,故電場消失後,仍能回復原來形狀;水珠往相對低電位移動的電場作用力 \geq F_1 ,故電場消失後,不能回復原來形狀,仍停留於形變後的狀態。

三、討論最小驅動電壓之的結果

在矽油的實驗中,已知電極寬度 3200 μm 到 3400 μm 為一轉折處。

推測原因為:

圖二十六、隨著電極寬度增加,電場強度及水珠需移動距離也增加。

圖二十六中虛線為水珠需移動距離與電場強度,對水珠移動的影響程度相同的階段,而此虛線對應的電極寬度應位於 3200 μ m 至 3400 μ m 之間。因此在虛線左側時,電場對水珠移動影響較大,隨著電極寬度增加,驅動電壓越來越小;而在虛線右側時,距離對水珠移動影響較大,隨著電極寬度增加,驅動電壓越來越大。

柒、結論

一、疏水層的疏水程度與表面粗糙程度影響電濕潤效果。

電濕潤裝置中,疏水層可以接觸角——疏水程度及滑動角——表面粗糙程度,兩面 向進行分析,且推測其表面粗糙程度影響程度較大。

二、水珠運動方向與電場方向相同,且在停止供電後,傾向留在原電位相對低的電極上。

在我們使用的水(碳酸水溶液)中,因正離子的遷移速率較負離子快,水珠傾向往相對電位低的電極移動(與電場方向相同),且在停止供電後,傾向停留在原電位相對低的電極上。

三、水量越大,水珠運動速率越快。

四、電極與水珠運動速率的關係

(一)電極寬度

電極寬度 $3200 \, \mu \, \text{m}$ 與 $3400 \, \mu \, \text{m}$ 之間,有一轉折點。在此轉折點前,驅動電壓逐漸下降;在此轉折點後,驅動電壓則會明顯上升。

(二) 電極間距

電極間距較小的 $160 \mu m$ 之驅動電壓,比較大的 $200 \mu m$ 來得小。

五、推進式的水珠移動速率較限定式供電方式快;電荷先行分離的水珠移動速率變快。

- (一) 推進式供電方式(實驗五中 A 與 A')表現較佳,因均為同方向電場,電場可疊加。
- (二) 起初若先有正電壓後才開始使水珠移動之供電方式(實驗五中 B 與 B')表現較佳, 因負電荷已先移動,後續水珠移動僅受正電荷影響。

六、使水珠移動速率最大化的有利條件,包含推進式之供電方式,且初始需給正電壓等。最有利條件為以下四點:

- (一) 電極為方格狀、絕緣層薄、疏水程度佳且表面粗糙程度低
- (二) 電極寬度不超過 $3200 \mu m$ 、電極間距小、水量 $20 \mu l$ 内,越大越好
- (三) 電壓差距大→電場強度強
- (四) 採推進式之供電方式,目初始需給正電壓

捌、參考資料及其他

- [1] Kang Yong Lee, *et al.*, "Smart Self-Cleaning Cover Glass For Automotive Miniature Cameras," *IEEE MEMS*, Shanghai, CHINA, 24-28 January 2016
- [2] Xuaifeu Reb, *et al.*, "Electrohydrodynamic analysis of electrowetting-on-dielectric (EWOD)-Induced transport of a microdroplet based on the lattice Boltzmann method," *AIP Advances* 9, 2019.
- [3] Vandana Jain, *et al.*, "Effect of electrode geometry on droplet velocity in open EWOD based device for digital microfluidics applications," *Journal Electrostatics*, 2017.
- [4] Mdd Enayet Razu, *et al.*, "Digital microfluidics using a differentially polarized interface (DPI) to enhance translational force," *Lab on a Chip*, 2018.
- [5] Cheung Tong Cheng, *et al.*, "Wetting characteristics of bare micro-patterned cyclic olefin copolymer surfaces fabricated by ultra-precision raster milling," *RSC Advances*, 2016.
- [6] Katsuo Mogi, *et al.*, "Electrowetting on Dielectric (EWOD) Device with Dimple Structures for Highly Accurate Droplet Manipulation," *Applied Sciences*, 2019.

附錄

一、實驗四:探討不同供電方式與能使水珠流暢運動的最短供電週期的關係。

A 供電方式的 arduino 程式碼:

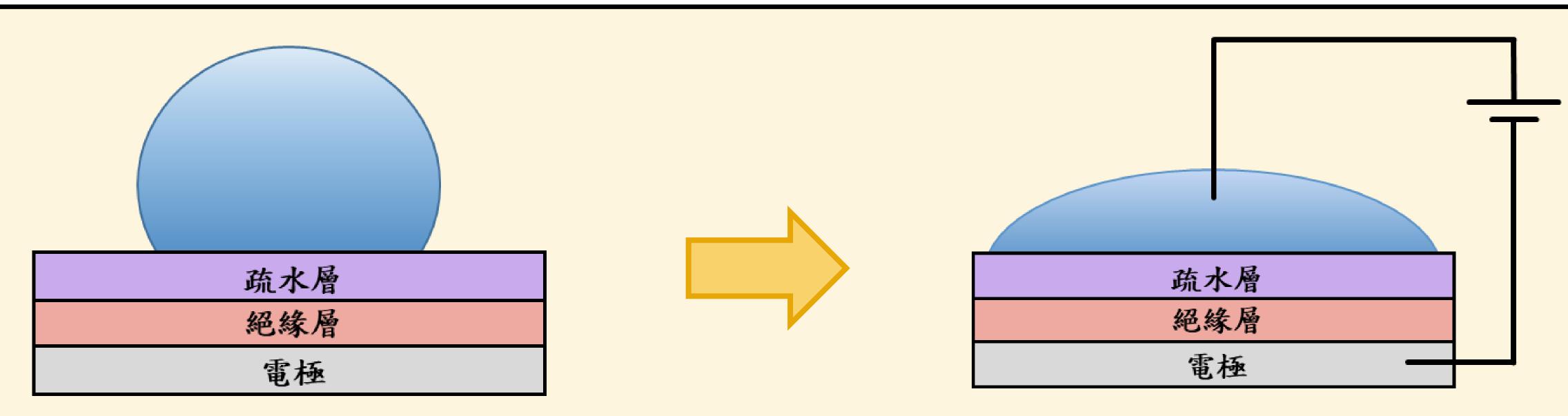
```
void setup() {
                            Serial.print("3");
                                                           digitalWrite(8, HIGH);
 Serial.begin(9600);
                            Serial.print("\n");
                                                           digitalWrite(7, HIGH);
 pinMode(13, OUTPUT);
                            digitalWrite(13, LOW);
 pinMode(8, OUTPUT);
                                                           digitalWrite(4, HIGH);
                             digitalWrite(8, LOW);
                                                           delay(sec);
 pinMode(7, OUTPUT);
                             delay(a);
 pinMode(4, OUTPUT);
                             digitalWrite(7, HIGH);
                                                           Serial.print("3");
                             digitalWrite(4, HIGH);
                                                           Serial.print("\n");
                             delay(sec);
void loop() {
                                                           digitalWrite(13, LOW);
  int a=1;
                                                           digitalWrite(8, LOW);
                             Serial.print("4");
  int sec=5000;
                                                          delay(a);
                             Serial.print("\n");
                                                           digitalWrite(7, HIGH);
                             digitalWrite(13, LOW);
  Serial.print("2");
                                                           digitalWrite(4, HIGH);
                             digitalWrite(8, LOW);
  Serial.print("\n");
                                                           delay(sec);
                             digitalWrite(7, LOW);
 digitalWrite(13, LOW);
                             delay(a);
 delay(a);
                             digitalWrite(4, HIGH);
 digitalWrite(8, HIGH);
                             delay(sec);
 digitalWrite(7, HIGH);
 digitalWrite(4, HIGH);
 delay(sec);
```

```
Serial.print("1");
        Serial.print("2");
                                              Serial.print("\n");
        Serial.print("\n");
                                             digitalWrite(4, LOW);
        digitalWrite(4, LOW);
                                             digitalWrite(7, LOW);
        digitalWrite(7, LOW);
                                             digitalWrite(8, LOW);
        delay(a);
                                             delay(a);
        digitalWrite(8, HIGH);
                                             digitalWrite(13, HIGH);
        digitalWrite(13, HIGH);
                                             delay(sec);
        delay(sec);
B 供電方式的 arduino 程式碼:
    void setup() {
                                 Serial.print("4");
                                                               Serial.print("1");
     Serial.begin(9600);
                                 Serial.print("\n");
                                                               Serial.print("\n");
     pinMode (13, OUTPUT);
                                 digitalWrite(13, LOW);
                                                              digitalWrite(8, LOW);
     pinMode(8, OUTPUT);
                                                              digitalWrite(7, LOW);
                                 digitalWrite(8, LOW);
     pinMode(7, OUTPUT);
                                 digitalWrite(7, LOW);
                                                              digitalWrite(4, LOW);
     pinMode (4, OUTPUT);
                                                              delay(a);
                                 delay(a);
                                                              digitalWrite(13, HIGH);
                                 digitalWrite(4, HIGH);
                                                              delay(sec);
                                 delay(sec);
   void loop() {
     int a=1;
                                  Serial.print("3");
     int sec=15000;
                                  Serial.print("\n");
                                 digitalWrite(13, LOW);
     Serial.print("2");
                                 digitalWrite(8, LOW);
     Serial.print("\n");
                                 digitalWrite(4, LOW);
     digitalWrite(13, LOW);
                                 delay(a);
     digitalWrite(7, LOW);
                                 digitalWrite(7, HIGH);
     digitalWrite(4, LOW);
                                 delay(sec);
     delay(a);
     digitalWrite(8, HIGH);
                                  Serial.print("2");
     delay(sec);
                                  Serial.print("\n");
                                  digitalWrite(13, LOW);
     Serial.print("3");
                                 digitalWrite(7, LOW);
     Serial.print("\n");
                                 digitalWrite(4, LOW);
     digitalWrite(13, LOW);
                                 delay(a);
     digitalWrite(8, LOW);
                                 digitalWrite(8, HIGH);
     digitalWrite(4, LOW);
                                 delay(sec);
     delay(a);
     digitalWrite(7, HIGH);
     delay(sec);
A'供電方式的 arduino 程式碼:
void setup() {
                                             void loop() {
 Serial.begin(9600);
                                               int a=1;
 pinMode(13, OUTPUT);
                                               int sec=600;
 pinMode(8, OUTPUT);
 pinMode (7, OUTPUT);
                                               Serial.print("2");
 pinMode (4, OUTPUT);
                                               Serial.print("\n");
 Serial.print("WATCH OUT!!! All 240V!");
                                               digitalWrite(13, LOW);
 Serial.print("\n");
                                               delay(a);
 digitalWrite(4, LOW);
                                               digitalWrite(8, HIGH);
 digitalWrite(7, LOW);
                                               digitalWrite(7, HIGH);
 digitalWrite(8, LOW);
                                               digitalWrite(4, HIGH);
 digitalWrite(13, LOW);
                                               delay(sec);
 delay(3000);
                                        26
```

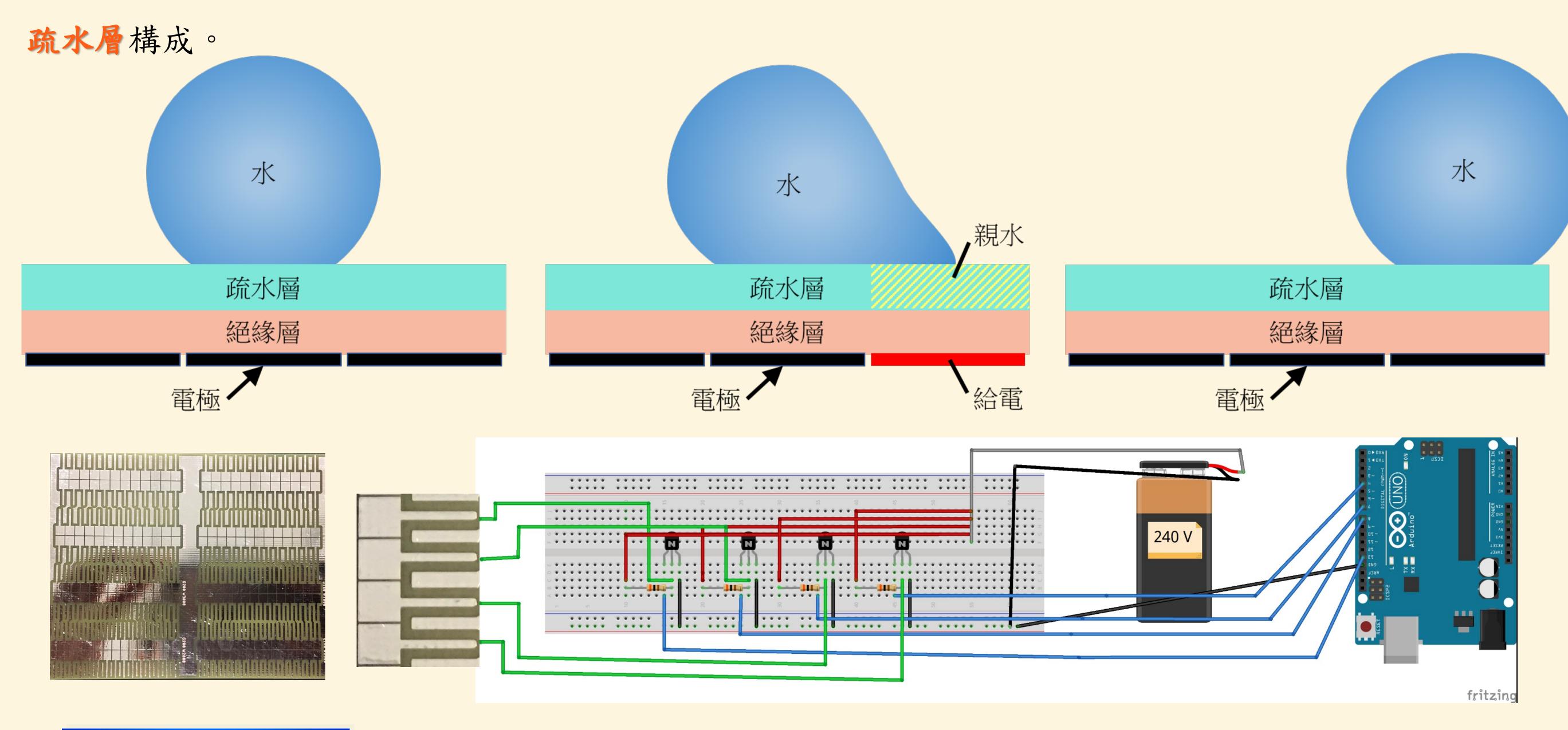
}

```
Serial.print("3");
                                                 Serial.print("2");
  Serial.print("\n");
                                                 Serial.print("\n");
  digitalWrite(13, LOW);
                                                 digitalWrite(13, LOW);
  digitalWrite(8, LOW);
                                                 digitalWrite(7, LOW);
                                                 digitalWrite(4, LOW);
  digitalWrite(4, LOW);
                                                 delay(a);
  delay(a);
                                                 digitalWrite(8, HIGH);
  digitalWrite(7, HIGH);
                                                 delay(sec);
  delay(sec);
                                                 Serial.print("1");
  Serial.print("4");
                                                 Serial.print("\n");
                                                 digitalWrite(8, LOW);
  Serial.print("\n");
                                                 digitalWrite(7, LOW);
  digitalWrite(13, LOW);
                                                 digitalWrite(4, LOW);
  digitalWrite(8, LOW);
                                                 delay(a);
  digitalWrite(7, LOW);
                                                 digitalWrite(13, HIGH);
  delay(a);
                                                 delay(sec);
  digitalWrite(4, HIGH);
  delay(sec);
                                                 }
  Serial.print("3");
  Serial.print("\n");
  digitalWrite(13, LOW);
  digitalWrite(8, LOW);
  digitalWrite(4, LOW);
  delay(a);
  digitalWrite(7, HIGH);
  delay(sec);
B'供電方式的 arduino 程式碼:
void setup() {
  Serial.begin(9600);
                                                  Serial.print("3");
  pinMode(13, OUTPUT);
                                                  Serial.print("\n");
  pinMode (8, OUTPUT);
                                                  digitalWrite(13, LOW);
  pinMode (7, OUTPUT);
                                                  digitalWrite(8, LOW);
  pinMode (4, OUTPUT);
                                                  delay(a);
                                                  digitalWrite(7, HIGH);
  Serial.print("WATCH OUT!!! All 240V!");
                                                  digitalWrite(4, HIGH);
  Serial.print("\n");
                                                  delay(sec);
  digitalWrite(4, LOW);
                                                  Serial.print("4");
  digitalWrite(7, LOW);
                                                  Serial.print("\n");
  digitalWrite(8, LOW);
                                                  digitalWrite(13, LOW);
  digitalWrite(13, LOW);
                                                  digitalWrite(8, LOW);
  delay(3000);
                                                  digitalWrite(7, LOW);
}
                                                  delay(a);
                                                  digitalWrite(4, HIGH);
void loop() {
                                                  delay(sec);
  int a=1;
  int sec=700;
                                                  Serial.print("3");
  Serial.print("2");
                                                  Serial.print("\n");
  Serial.print("\n");
                                                  digitalWrite(4, LOW);
  digitalWrite(13, LOW);
                                                  delay(a);
  digitalWrite(7, LOW);
                                                  digitalWrite(7, HIGH);
  digitalWrite(4, LOW);
                                                  digitalWrite(8, HIGH);
  delay(a);
                                                  digitalWrite(13, HIGH);
  digitalWrite(8, HIGH);
                                         27
                                                  delay(sec);
  delay(sec);
```

```
Serial.print("1");
Serial.print("2");
                                             Serial.print("\n");
Serial.print("\n");
                                             digitalWrite(4, LOW);
digitalWrite(4, LOW);
                                             digitalWrite(7, LOW);
digitalWrite(7, LOW);
                                             digitalWrite(8, LOW);
delay(a);
                                             delay(a);
digitalWrite(8, HIGH);
                                             digitalWrite(13, HIGH);
digitalWrite(13, HIGH);
                                            delay(sec);
delay(sec);
                                           }
```

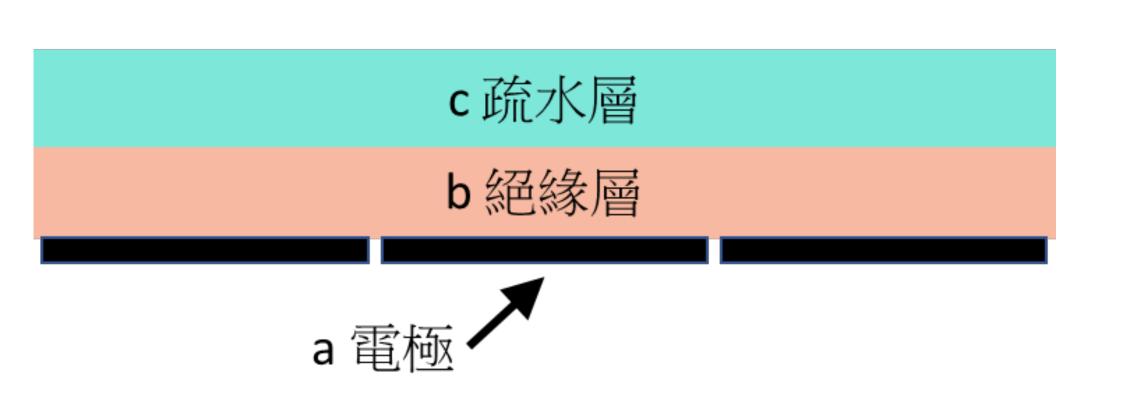

【評語】051807

本作品探討不同電濕潤的裝置、水量及電場與水珠運動速度 的關係,並探究使水珠運動速率最大化的條件。作者展現優良的 實驗設計與執行能力,對本主題進行有系統的探討,堪稱佳作。 唯本主題並非新穎題材,作品內容宜有更大幅度創新。


研究目的

本研究首先探討自製電路板及實驗裝置上,會影響水珠移動的變因,並結合程式碼控制電場,探討電場如何影響水珠移動,另外也探討不同水量、電極寬度、電極間距、疏水材料及供電方式與水珠運動速度的關係,並從中探究使水珠運動速率最大化的條件。

透過探討以上變因與水珠運動速度的關係,可望提升電濕潤顯示器單位時間內的幀數(張數),亦即流暢度,並期盼將此研究結果應用於各式表面的自我清潔系統中。

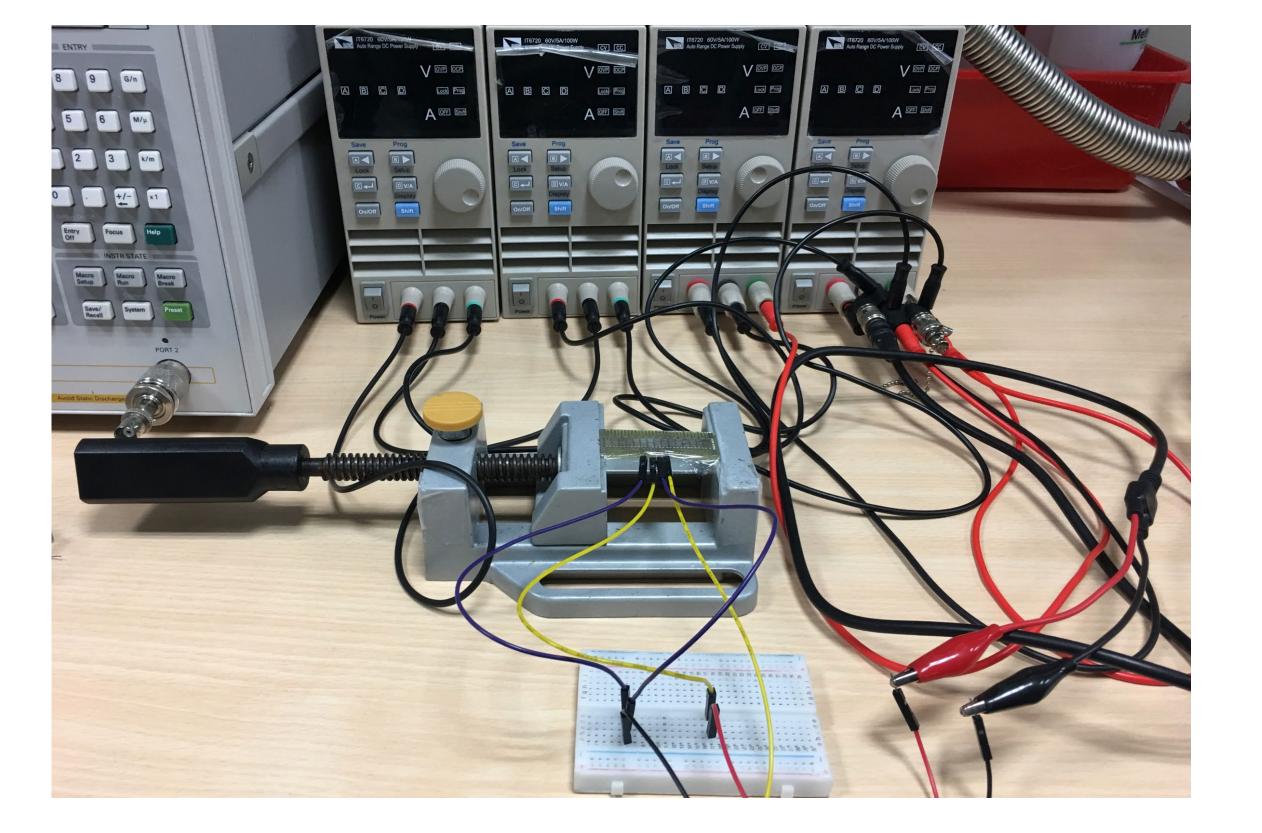


下圖所示為自行設計的介電濕潤裝置,以橫向電場為動力,促使水珠橫向移動,並由電極、絕緣層、

實驗一

製作實驗裝置,探討裝置上影響水珠移動的變因

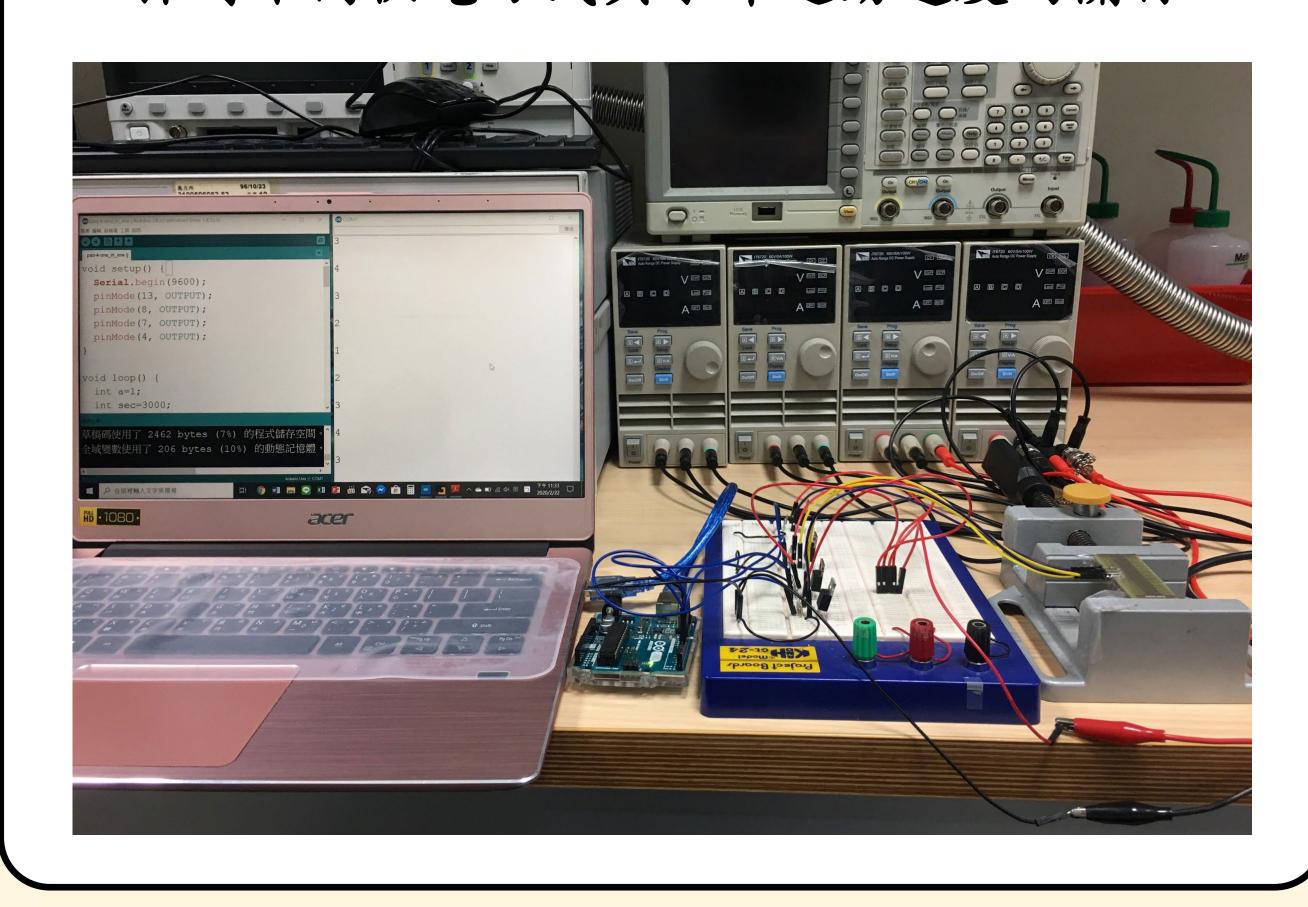
實驗二


探討電場如何影響水珠移動

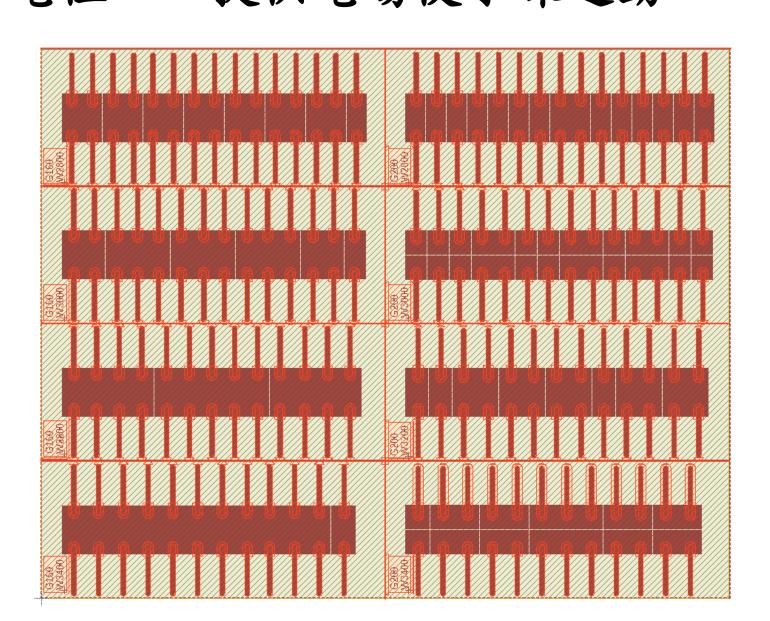
OV OV OV

◆◆ 電擊間距(G)

實驗三


探討不同水量、電極寬度、電極間距和疏水材料,與水珠運動速度的關係

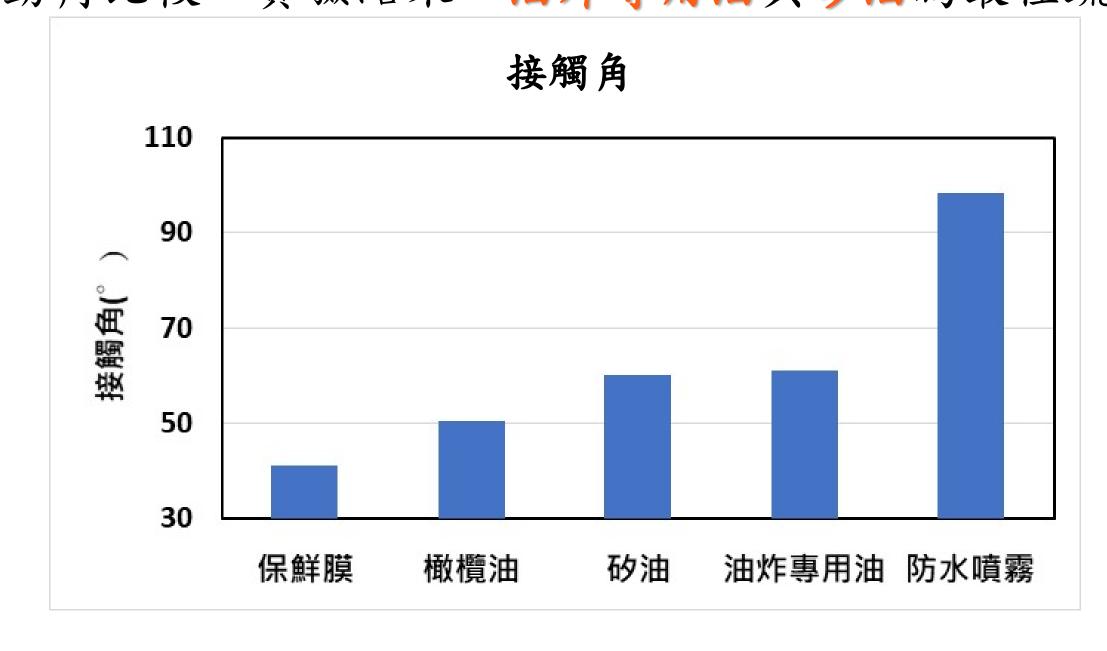
實驗四

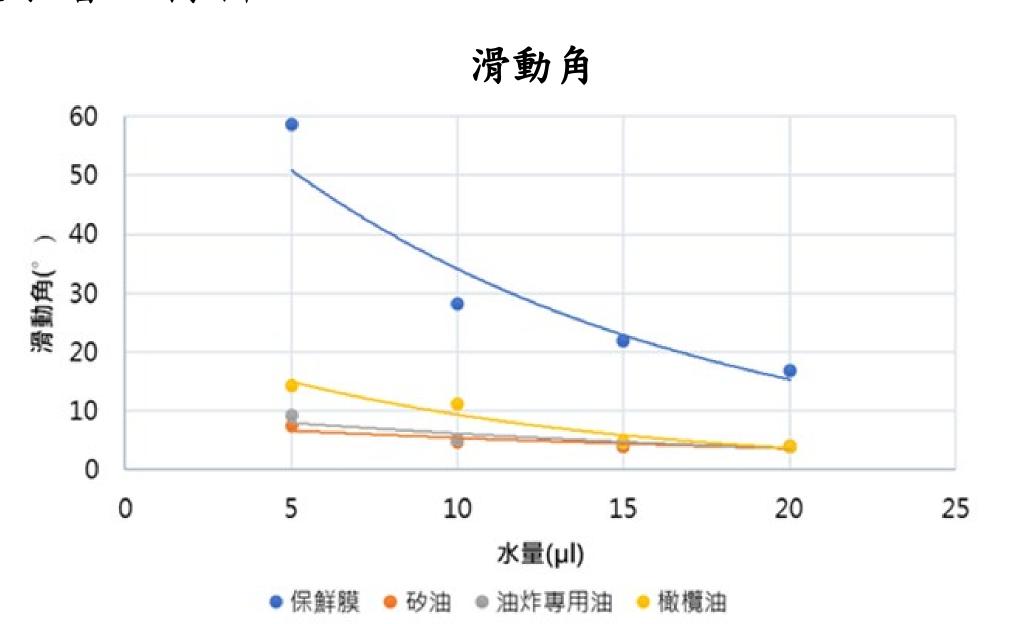

電擊寬度(W)

探討不同供電方式與水珠運動速度的關係

實驗一

(一)電極——提供電場使水珠運動




(二)絕緣層——避免偏壓過大擊穿電雙層發生電解反應

	優點	缺點
防焊層	表面平整、	過厚、
	廠商代工	無法調整厚度
Parafilm	表面平整、	具延展性
I al al I I III	服貼度高	造成厚薄不均
加 经 吡	厚度適中、	具延展性
保鮮膜	服貼度高	造成厚薄不均

(三)疏水層——易於水珠運動

以防水噴霧、矽油、橄欖油、油炸專用油及保鮮膜(即絕緣層,作為對照組)五種材質經接觸角與 滑動角比較。實驗結果:油炸專用油與砂油為最佳疏水層之材料。

實驗二 開啟電壓的狀態 關閉電壓的狀態 A' B' B A **0V** -120V -120V -120V 0V 120V 0V 0V 07 120V 120V C' D' D 0V **0V** 120V 120V -120V 0V 120V 0V 0V -120V -120V 07

- 1. 水珠向相對低電位移動之幅度 > 向相對高電位移動之幅度。
- 2. 水珠在關閉電壓後,傾向停留於供電時電位相對低的電極上。

實驗三 覆蓋保鮮膜 滴10 μ1水 架設電路 焊杜邦線 塗20μ1矽油 以5V為單位 滴15 μ1水 200V遞減測量 塗20 µ1油 滴20μ1水 炸專用油 已知條件:最小驅動電壓越小,水珠運動速度越快 A. 油炸專用油 1. 在不同電極寬度與間距下,水量越大, Gap: 160 Gap:200 驅動電壓越小。 180 170 160 \$\frac{150}{2} 180 170 160 € 150 2. 在不同水量與間距下,電極寬度越大, 斷 140 圖 130 画 120 圖 110 驅動電壓越小。 100 100 90 80 3. 電極間距較小,整體驅動電壓較小。 80 2600 2800 3000 3200 3600 3400 3600 2600 3200 2800 電極寬度(µm) 電極寬度(µm) **→** 10µl **→** 15µl **→** 20µl **→** 10µl **→** 15µl **→** 20µl 1. 在不同電極寬度與間距下,水量越大, B. 矽油 驅動電壓越小;但在水量20μ1時, GAP:160 **GAP:200** 電極寬度越大,驅動電壓越大。 160 160 150 150 () 140() 130() 120 ○ 140○ 130● 120 2. 在不同水量與間距下,電極寬度越大, 薊 110 編 110 圖 100 圖 100 驅動電壓越小。若遇3200 μm~3400 μm

3200

3000

→10µl **→**15µl **→**20µl

PAD寬度(µm)

3400

3600

之間的轉折點則趨勢相反。

3. 電極間距較小,整體驅動電壓較小。

90

2600

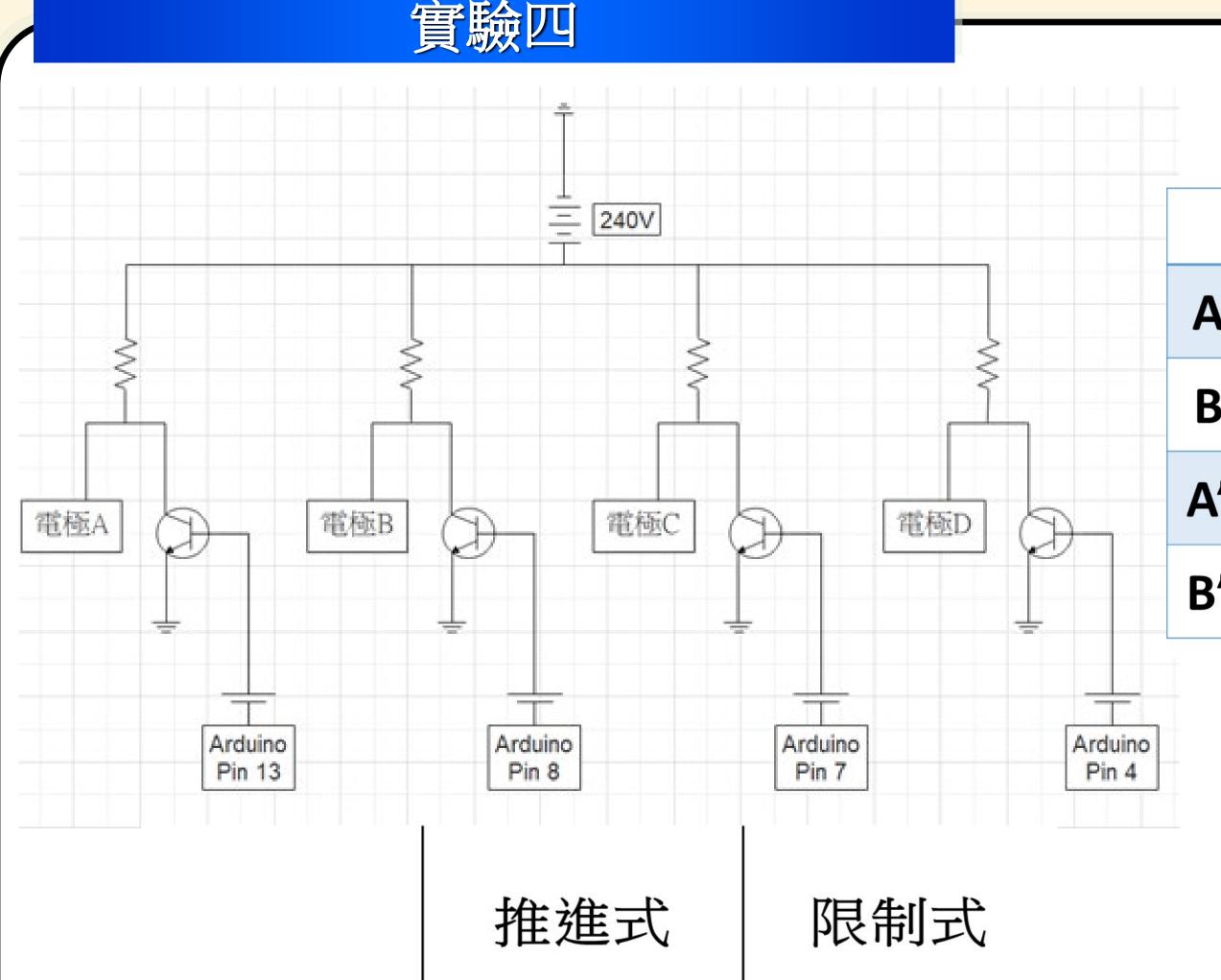
2800

3200

PAD寬度(µm)

3000

→ 10µl **→** 15µl **→** 20µl


3400

3600

90

2600

2800

		<u> </u>	\equiv	四	五	平均
Α	1.25s	1.20s	1.30s	1.20s	1.25s	1.24s
В	1.40s	1.45s	1.50s	1.45s	1.50s	1.46s
Α'	0.65s	0.70s	0.65s	0.65s	0.60s	0.65s
B'	0.80s	0.85s	0.80s	0.90s	0.80s	0.83s

- 1. 推進式較限制式的供電週期短。
- 2. 電荷分離式較一般式的供電週期短。

分析實驗結果:

- 因電場同向而疊加,導致強度增強, 故水珠於推進式較限制式運動速度快。
- 2. 水珠於電荷分離式較一般式運動速度快, 則初步證實內部正負離子分布對水珠運動 速度具影響性。

實驗結果的原理討論

般式

電荷

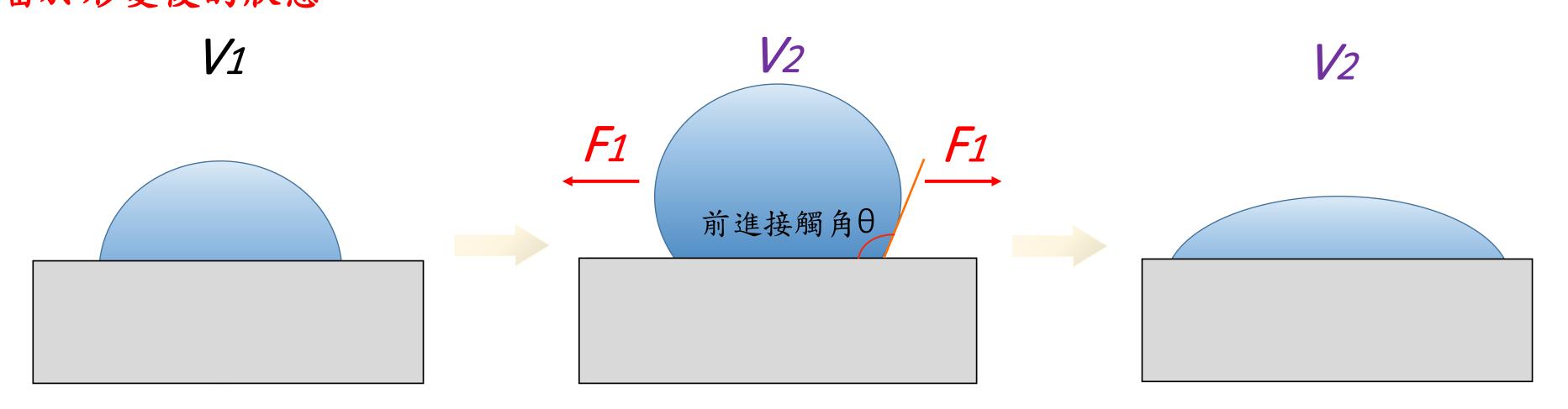
分離式

- 一、討論供電方式如何影響水珠移動的結果
 - (一) 水珠向低電位形變幅度,大於向高電位形變幅度的影響因素為離子遷移速率。

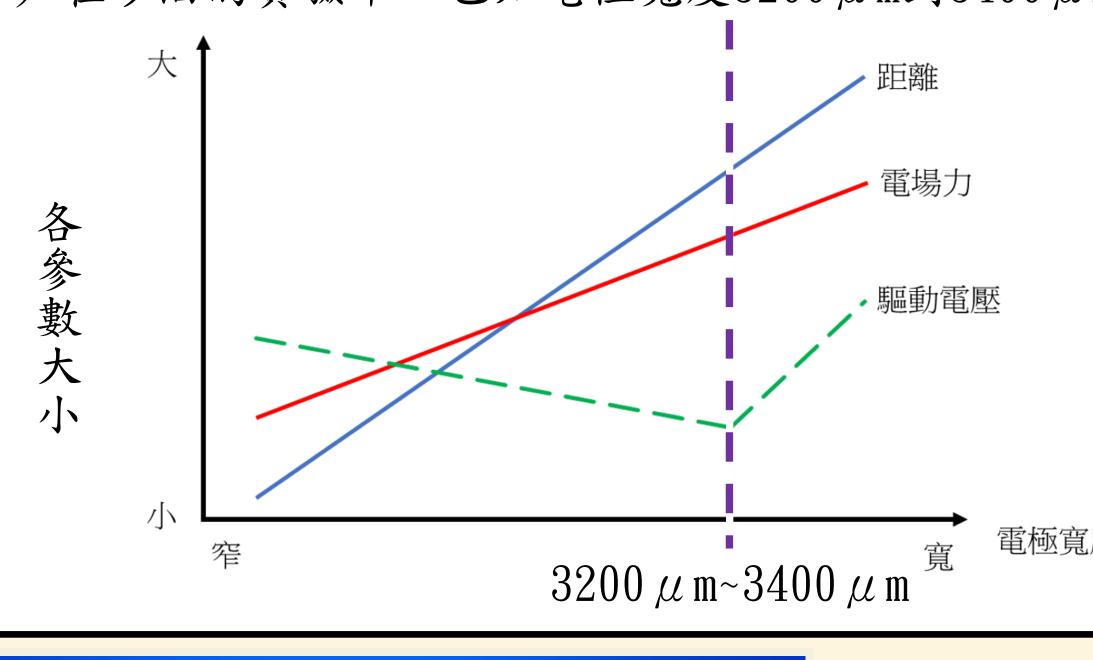
|供電方式B'

 $H2O + CO_2 \rightarrow H^+ + HCO_3^-$

供電方式A′


已知氫離子的遷移速率為碳酸氫根的幾萬倍,故造成該現象發生,此假設另由實驗證明。

(二)影響關閉電壓後水珠的回復幅度差距的原因為前進接觸角。


供電方式A 供電方式B

令水珠突破前進接觸角而溢出瞬間,對水珠的水平作用力為 F_1 。

推測此現象發生原因為水珠往相對高電位移動的電場作用力小於FI,故電場消失後,仍能回復原來形狀;水珠往相對低電位移動的電場作用力大於FI,故電場消失後,不能回復原來形狀,仍停留於形變後的狀態。

- 二、討論最小驅動電壓出現轉折點的原因
 - (一) 在矽油的實驗中,已知電極寬度 $3200\,\mu\,\mathrm{m}$ 到 $3400\,\mu\,\mathrm{m}$ 有一轉折點。

當電極寬度增加,距離與電場皆增 大。距離與電場的線下面積為各自對水 珠移動的影響程度。紫色虛線表示水珠 需移動距離與電場強度,對水珠移動的 影響程度相同時,對應到的電極寬度應 電極寬度 位於3200 μ m至3400 μ m間。

結論

- 一、疏水層的疏水程度與表面粗糙程度影響電濕潤效果。
- 二、水珠運動方向與電場方向相同,且在停止供電後,傾向留在原電位相對低的電極上。
- 三、水量、電極寬度越大,電極間距越小,皆使水珠移動速率變快;但遇轉折點,則趨勢相反。
- 四、推進式、電荷分離式,皆使水珠移動速率變快。

未來展望

- 一、以玻璃基板、聚合物絕緣紙作為絕緣層進行以上實驗,可望未來應用於汽車擋風玻璃與太陽能板 的自我清潔系統,或電濕潤顯示紙更加省電節能的應用。
- 二、以不同物質狀態(如水蒸氣)進行以上實驗,期望應用於汽車擋風玻璃,解決霧氣影響視線問題。