中華民國第60屆中小學科學展覽會作品說明書

國中組 數學科

030403

正 n 多邊形中的等腰個數這樣算!

學校名稱:臺中市私立弘文高級中學(附設國中)

作者:

國二 紀珮羽

國二 吳珈榛

國二 黃薇均

指導老師:

曾立行

余政和

關鍵詞:等腰三角形個數、正 n 邊形

摘要

壹、研究動機

老師在課堂上分享之前他帶學生做科展的經驗,我們聽完後也想嘗試,所以我們就去找 老師討論,老師叫我們到科學研習月刊上找題目,於是我們就找到游森棚教授出的這個題目, 題目的敘述如下:

正七邊形的頂點有五個紅點,兩個黑點。用紅點當頂點可以連成多少個等腰三角形?生性謹慎的小怡說:「我又不知道黑點在那裡,老師給的條件不夠,這一題不能算啦!」。

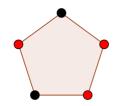
大而化之的小郡說:「沒差啦,黑點在那裡算出來應該都一樣啦!」小怡說:「怎麼可能算出來一樣?如果題目改成正六邊形,那兩個黑點在對角線的話就沒有等腰三角形了,但是兩個黑點在其他位置就還有等腰三角形。所以答案一定和黑點位置有關啦!」

小郡說:「不管啦,我們先算算看再說吧!」所以這個七邊形之謎的結果如何呢? 由以上這題目為契機,我們的研究內容是找出正多邊形中以兩黑點為底角和一紅點為頂角所 組成的等腰三角形個數公式。

貳、研究目的

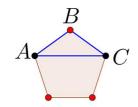
- 一、找正多邊形有兩個黑點為底角的等腰三角形個數之規律與性質。
- 二、證明正多邊形有兩個黑點為底角的等腰三角形個數之公式。
- 三、找正多邊形有三個黑點任取兩黑點為底角的等腰三角形個數之規律與性質。
- 四、證明正多邊形有三個黑點任取兩黑點為底角的等腰三角形個數之公式。

參、研究設備與器材


紙、筆、電腦、GGB 軟體、EXCEL。

肆、 研究過程與方法

一、 研究方法


- (一) 找正多邊形有兩個黑點的等腰三角形個數之規律與性質
- 1. 正多邊形中兩個黑點之座標表示法

在畫圖的過程中,我們自創了一些符號來表示正多邊形中,黑點的分布狀態,說明如下:

這個正五邊形的黑點分布為(2,3),其中的2是表示兩黑點之間所包含的正五邊形邊數,3是兩黑點之間另外一邊所包含的正五邊形邊數。

- 2. 正多邊形中三角形之座標表示法
- 同 1. 在表示正多邊形中的頂點與邊之間的關係,其關係如下:

 Δ ABC 用符號(\overline{AB} , BC, AC)來表示,其中 \overline{AB} 為 $A \times B \ge$ 間所包含的多邊形邊數,所以 \overline{AB} =1、 \overline{BC} =1、 \overline{AC} =3,則其座標表示為(1,1,3)。

- 3. 正多邊形有兩個黑點之等腰三角形個數研究
- (1)正三角形、正四邊形、正五邊形研究

正加邊形	正三角形	正四邊形		正三角形 正四邊形 正五邊形		邊形
黑點分布 種類圖						
黑點分布	(1, 2)	(1, 3)	(2, 2)	(1, 4)	(2, 3)	
等腰三角形分布 類型	(1, 1, 1)	X	(1, 1, 2)	(1, 2, 2)	(1, 1, 3)	
等腰三角形的數 量	1×3=3個	0個	1×4=4個	1×5=5個	1×5=5個	
總數	3個	4個		5+5=1	10個	

由上表格可知正三角形黑點分布的種類只有 1 種,在這一個黑點分布裏也只有一種等腰三角形分布類型,因此可推得這一等腰三角形分布類型會有 3 個等腰三角形,原因是在正三角形中紅色頂點可以更換 3 次位置。在正四邊形中,黑點分布有 2 個種類,其中黑點(1,3)分布類型裏是畫不出等腰三角形,而(2,2)的類型可以畫出(1,1,2)等腰三角形,因此等腰三角形個數為1×4=4 個。同理,正五邊形的結果呈現在表格之中。

(2)正六邊形研究

正用邊形	正六邊形				
黑點分布 種類圖					
黑點分布	(1, 5)	(2, 4)	(3,3)		
等腰三角形分布類型	X	(1, 1, 4) $(2, 2, 2)$	X		
等腰三角形的數量	0個	2×6=12 個	0個		
總數	12 個				

正六邊形的結果如上,我們可以發現黑點分布類型中的(1,5)、(3,3)都是畫不出等腰三角形的類型,而黑點分布類型中的(2,4)確有兩組等腰三角形分布類型,其中每組各會有6個等腰三角形,因此總數為12個。

(3)正七邊形研究

正加邊形	正七邊形					
黑點分布 種類圖						
黑點分布	(1, 6)	(2,5)	(3,4)			
等腰三角形分布類型	(1, 3, 3)	(1, 1, 5)	(2, 2, 3)			
等腰三角形的數量	1×7=7 個	1×7=7 個	1×7=7 個			
總數		7+7+7=21 個				

由上表可知正七邊形的黑點分布有3個種類,且每一個種類都會各有一組等腰三角形分布類型,所以等腰三角形總數為21個。

(4)正八邊形研究

正用邊形	正八邊形					
黑點分布 種類圖						
黑點分布	(1,7)	(2, 6)	(3, 5)	(4, 4)		
等腰三角形分布類型	X	(1, 1, 6) $(2, 3, 3)$	X	(2, 2, 4)		
等腰三角形的數量	0個	2×8=16 個	0 個	1×8=8 個		
總數	16+8=24 個					

由上表可發現黑點分布類型(1,7)、(3,5)都是畫不出等腰三角形分布類型的組別,這跟之前

正四邊形、正六邊形非常類似,因此我們目前可以推斷正十邊形應該也會有這種現象。而在 黑點分布類型(2,6)的情況下會有2組等腰三角形分布類型,(4,4)只有1組,因此共有3組 類型,總數為24個等腰三角形。

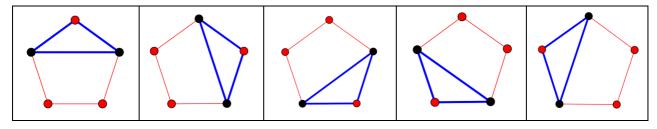
(5)正九邊形研究

正刀邊形	正九邊形					
黑點分布 種類圖						
黑點分布	(1,8)	(2,7)	(3, 6)	(4,5)		
等腰三角形分布類型	(1, 4, 4)	(1, 1, 7)	(3, 3, 3)	(2, 2, 5)		
等腰三角形的數量	1×9=9 個	1×9=9 個	1×9=9 個	1×9=9 個		
總數	9+9+9+9=36 個					

在正九邊形中黑點分布共有 4 個種類,情況與正三角形、正五邊形、正七邊形類似,每個黑點分布都會有一組等腰三角形分布類型,因此共有 4 組等腰三角形類型,總數 36 個。在此我們也可以先推斷正十一邊形只要有幾個黑點分布,就會有幾組等腰三角形分布類型。

(6)正十邊形研究

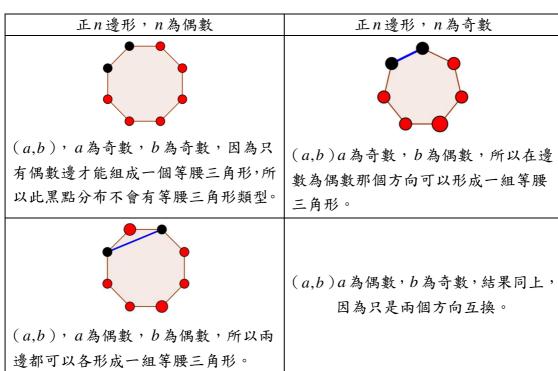
正Ⅱ邊形	正十邊形					
黑點分布 種類圖						
黑點分布	(1, 9)	(2, 8)	(3,7)	(4, 6)	(5,5)	
等腰三角形 分布類型	X	(1, 1, 8) $(2, 4, 4)$	X	(2, 2, 6) $(3, 3, 4)$	X	
等腰三角形 的數量	0 個	2×10=20 個	0個	2×10=20 個	0個	
總數	20+20=40 個					


之前於正八邊形的研究中,我們推斷了正十邊形一樣會有部份的黑點分布沒有等腰三角形分布類型,在此表格得到驗證。不過一同比較這些偶數邊的正多邊形時,通常一組黑點分布都會有2組等腰三角形分布類型,但在正四邊形與正八邊形中卻都會有一組黑點分布只有一組等腰三角形,分別是正四邊形(2,2)、正八邊形(4,4)的黑點分布類型。所以接下來我們要把這些觀察到的現象作好分類與解釋。

4. 正多邊形有兩黑點和等腰三角形分布類型之性質 由之前的圖表中,我們可以觀察到以下特徵:

(1) 黑點分布中,若邊數有 2 就有(1, 1, n-2) 這種類型的等腰三角形類型,邊數有 4 就有(2, 2, n-4),邊數有 6 就有(3, 3, n-6),以此類推邊數**有** a **(偶數)就有(\frac{a}{2}, \frac{a}{2}, n-a)類型的等 腰三角形。圖形解說如下:**

正n邊形	正n邊形	正n邊形	正n邊形
黑點分布有 2	黑點分布有 4	黑點分布有 6	黑點分布有a
(1, 1, n-2)	(2, 2, n-4)	(3, 3, n-6)	$(\frac{a}{2},\frac{a}{2},n-a)$
n-2	$ \begin{array}{c} 2 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	$\frac{3}{n-6}$	$\frac{a}{2}$ $n-a$


(2)每一組正n邊形中的等腰三角形分布類型都會有n個等腰三角形。如下圖,在黑點分布為(2,3)的五邊形中,會有一組等腰三角形分布類型為(1,1,3),其中因為等腰三角形的紅色頂點可以轉五次,所以(1,1,3)這組我們計為有5個等腰三角形。

(3)若黑點分布之間的邊數是奇數,則在該邊畫不出頂點,因此不會有等腰三角形分布類型出現。反之若黑點分布之間的邊數是偶數,則在該邊就可以畫出1個頂點,則圖示說明如下:

正n邊形	說明
	左圖中的黑點表示法為(a,n-a),其中
• •	a為奇數,那麼在那個方向上就找不到等腰
• •	三角形頂點。
	左圖中的黑點表示法為(a,n-a),其中 a為偶數,那麼在那個方向上就恰可找到1 個等腰三角形頂點。

(4)正n邊形, n為偶數時,其黑點分布若為(奇數,奇數),則不會有等腰三角形類型出現; 正n邊形,n為偶數時,其黑點分布若為(偶數,偶數),就會有2組等腰三角形類型出現; 正n邊形,n為奇數時,其黑點分布若為(奇數,偶數),就恰有1組等腰三角形類型出現; 正n邊形,n為奇數時,其黑點分布若為(偶數,奇數),就恰有1組等腰三角形類型出現; 以上性質圖示如下:

(二) 證明正多邊形有兩個黑點的等腰三角形個數之公式

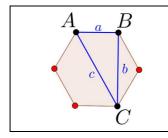
由之前歸納出的規律與性質之後,我們就利用這些性質去證明,證明如下:

正n邊形, n為偶數	正n邊形,n為奇數
設黑點分布為(x,y)	設黑點分布為(x,y)
則 $x + y = n$	則 $x + y = n$
$(1,n-1) \rightarrow 0$ 組	(1,n-1)→1 組
$(2,n-2) \rightarrow 2$ 組	$(2,n-2) \rightarrow 1$ 組
$(3,n-3) \to 0$ 組	$(3,n-3) \rightarrow 1$ 組
:	:
$(\frac{n}{2},\frac{n}{2}) \rightarrow 1$ 組	$\left(\frac{n-1}{2},\frac{n+1}{2}\right) \to 1 $ 組
∴共有 ⁿ / ₄ ×2-1 組等腰三角形類型	∴共有 $\frac{n-1}{2}$ 組等腰三角形類型
$\Rightarrow \text{@} \underline{\mathbf{y}} = \left(\frac{n}{4} \times 2 - 1\right) \times n$	⇒ $\#$ \Longrightarrow $\#$ $=$ $(\frac{n-1}{2}) \times n$
$= \frac{n^2}{2} - n = \frac{n(n-2)}{2}$	$=\frac{n(n-1)}{2}$

由以上的公式推導,我們得出了一個簡潔的公式如下:

正
$$n$$
 邊形中等腰三角形個數= $\frac{n(n-2)}{2}$, n 為偶數。

正
$$n$$
 邊形中等腰三角形個數= $\frac{n(n-1)}{2}$, n 為奇數。


到此我們算是完整解出當初引起我們研究興趣的題目。接下來我們就想說若黑點個數變為3個時,會不會一樣有一個漂亮簡潔的公式來計算出等腰三角形個數。

(三) 找正多邊形有三個黑點的等腰三角形個數之規律與性質

在這個部份我們是研究所有從3個黑點中任挑2個黑點當底角,在搭配一個紅點為頂角所形成的等腰三角形類型組數,其中另一個黑點是不能被當作頂角。

1. 正多邊形中三個黑點之座標表示法

在畫圖的過程中,我們延續了之前的表示法,只是現在黑點有3個,因此黑點分布的座標表示變成了(a,b,c),說明如下:

這個正六邊形的黑點分布為(1,2,3),其中的1表示為A、B兩黑點之間所包含的正六邊形邊數,2是B、C兩黑點之間所包含的正六邊形邊數,3則是C、A兩黑點之間所包含的正六邊形邊數。

2. 正多邊形中三角形之座標表示法

在正多邊形有三個黑點的研究當中,這裏的等腰三角形表示法相同於兩個黑點的研究,因為都只是要用來表示三角形。

3. 正多邊形有三個黑點之等腰三角形個數研究

(1)正四邊形、正五邊形、正六邊形

正n邊形	正四邊形	正五邊形		正六邊形		
黑點分布種 類圖						
黑點分布	(1, 1, 2)	(1, 1, 3)	(1, 2, 2)	(1, 1, 4)	(1, 2, 3)	(2, 2, 2)
等腰三角形 分布類型	(1, 1, 2)	(1, 2, 2)	(1, 1, 3)	(2, 2, 2)	(1, 1, 4) (2, 2, 2)	(1, 1, 4)
等腰三角形 的數量	1×4=4 個	1×5=5 個	1×5=5 個	1×6=6 個	2×6=12 個	1×6=6 個
總數	4個	5+5=	10 個		6+12+6=24 個	

由上表可知在正四邊形中黑點分布只有 1 種,其相對應的等腰三角形分布類型也只有 1 組。 正五邊形中,黑點分布有 2 種,每種裡面又都各有一組等腰三角形分布類型。正六邊形裏有 3 種黑點分布,其中黑點分布(1,2,3)中會有兩組等腰三角形分布類型。在這邊我們想要去瞭 解 2 組等腰三角形類型是怎麼出現,它與只有 1 組的差異在哪邊?

(2)正七邊形

正n邊形	正七邊形					
黑點分布 種類圖						
黑點分布	(1, 1, 5)	(1, 2, 4)	(1, 3, 3)	(2, 2, 3)		
等腰三角形分布類型	(1, 3, 3)	(1, 1, 5) $(1, 3, 3)$ $(2, 2, 3)$	(2, 2, 3)	(1, 1, 5)		
等腰三角形的數量	1×7=7 個	3×7=21 個	1×7=7 個	1×7=7 個		
總數	7+21+7+7=42 個					

由上表可知在正七邊形中有 4 組黑點分布,其中最特別的是(1,2,4)這類型。因為他有 3 組等腰三角形分布類型,這也表示在正六邊形裏的猜測不太準確,不是只有 1 組跟 2 組之間的差別。所以現在問題變成是要如何由黑點分布看出等腰三角形分布類型的組數?

(3)正八邊形

正n邊形	正八邊形					
黑點分布種類圖						
黑點分布	(1, 1, 6)	(1, 2, 5)	(1, 3, 4)	(2, 2, 4)	(2, 3, 3)	
等腰三角形分布類 型	(3, 3, 2)	(1, 1, 6) (3, 3, 2)	(2, 2, 4)	(1, 1, 6) (2, 2, 4) (3, 3, 2)	(1, 1, 6)	
等腰三角形的數量	1×8=8 個	2×8=16 個	1×8=8 個	3×8=24 個	1×8=8 個	
總數	8+16+8+24+8=64 個					

在我們整理出正八邊形的圖表時,我們突然想到之前在兩個黑點的結論,偶數邊才會有等腰三角形類型出現。因此黑點分布(1,1,6)中的確會有等腰三角形(3,3,2),因為邊數 6 可以把邊拆解成 $3 \cdot 3$ 。在黑點分布(1,2,5)中,因為有邊數 2,所以可以拆解成(1,1,6),但(3,3,2)又是怎麼來的呢?經由觀察,我們猜測是因為(1,2,5)中,1+5=6,所以將 6 做拆解就可以變成(3,3,2)。將這個猜測往下測試黑點分布(1,3,4),因為有 4 所以有(2,2,4),而 1+3=4 做拆

解會得到相同結果,因此只有一組。黑點分布(2,2,4)中,因為有2所以有(1,1,6)、有4所以有(2,2,4)、有2+4=6所以有(3,3,2)。黑點分布(2,3,3)中,因為有2所以有(1,1,6),但有3+3=6 時卻沒有(3,3,2),這是令我們感到奇怪的地方。因此我們只好繼續往下做觀察。(4)正九邊形

正n邊形		正九	邊形	
黑點分布種類圖				
黑點分布	(1, 1, 7)	(1, 2, 6)	(1, 3, 5)	(1, 4, 4)
		(1, 1, 7)	(2, 2, 5)	
等腰三角形分布類型	(4, 4, 1)	(3, 3, 3)	(3, 3, 3)	(2, 2, 5)
		(4, 4, 1)	(4, 4, 1)	
等腰三角形的數量	1×9=9 個	3×9=27 個	3×9=27 個	1×9=9 個
黑點分布 種類圖				
黑點分布	(2, 2, 5)	(2, 3, 4)	(3, 3, 3)	
等腰三角形分布類型	(1, 1, 7)	(1, 1, 7) (2, 2, 5) (3, 3, 3)	X	
等腰三角形的數量	1×9=9 個	3×9=27 個	0個	
總數	9+2	7+27+9+9+27=10	08個	

在有了正八邊形中的部份發現,我們整理正九邊形的速度就比快。例如:黑點分布(1,2,6)中,有2就有(1,1,7)、有6就有(3,3,3)、有2+6=8就有(4,4,1)。但黑點分布(1,1,7)中有1+1=2卻沒有(1,1,7),同樣的情況也發生在黑點分布(1,4,4)、(2,2,5)中。最後黑點分布(3,3,3)更是連一組等腰三角形類型都沒有,這應該是因為黑點分布所佔據的位置剛好把頂點能用的位置都佔據了。因此接下來我們想要釐清的問題多了一個,若黑點分布原本就為等腰三角形,其等腰三角形類型應該有幾組?

(5)正十邊形

(の)エー返ル				
正n邊形		正十	邊形	
黑點分布種類圖				
黑點分布	(1, 1, 8)	(1, 2, 7)	(1, 3, 6)	(1, 4, 5)
等腰三角形分布類	(4, 4, 2)	(1, 1, 8)	(2, 2, 6)	(2, 2, 6)
型	(4, 4, 4)	(4, 4, 2)	(3, 3, 4)	(3, 3, 4)
等腰三角形的數量	1×10=10 個	2×10=20 個	2×10=20 個	2×10=20 個

黑點分布種類圖				
黑點分布	(2, 2, 6)	(2, 3, 5)	(2, 4, 4)	(3, 3, 4)
等腰三角形分布類 型	(1, 1, 8) $(3, 3, 4)$ $(4, 4, 2)$	(1, 1, 8) $(4, 4, 2)$	(1, 1, 8) (2, 2, 6) (3, 3, 4)	(2, 2, 6)
等腰三角形的數量	3×10=30 個	2×10=20 個	3×10=30 個	1×10=10 個
總數		10+20+20+20+30+	20+30+10=160 個	

在正十邊形中,之前發現的性質依然可以使用。只有黑點分布是等腰三角形的(1,1,8)、(2,2,6)、(2,4,4)、(3,3,4)中依然有例外,因為在黑點分布(1,1,8)中的1+1=2不會有(1,1,8)出現。同樣的情況也發生在另外3個,我們將這種情況稱之為若黑點分布自己是等腰三角形,那它的等腰三角形分布類型就會被吃掉。

(6)正十一邊形

正n邊形			正十一邊形		
黑點分布 種類圖					
黑點分布	(1, 1, 9)	(1, 2, 8)	(1, 3, 7)	(1, 4, 6)	(1, 5, 5)
等腰三角形 分布類型	(5, 5, 1)	(1, 1, 9) $(4, 4, 3)$ $(5, 5, 1)$	(2, 2, 7) $(4, 4, 3)$ $(5, 5, 1)$	(2, 2, 7) $(3, 3, 5)$ $(5, 5, 1)$	(3, 3, 5)
等腰三角形 的數量	1×11=11 個	3×11=33 個	3×11=33 個	3×11=33 個	1×11=11 個
黑點分布 種類圖					
黑點分布	(2, 2, 7)	(2, 3, 6)	(2, 4, 5)	(3, 3, 5)	(3, 4, 4)
等腰三角形 分布類型	(1, 1, 9)	(1, 1, 9) $(3, 3, 5)$ $(4, 4, 3)$	(1, 1, 9) (2, 2, 7) (3, 3, 5)	(4, 4, 3)	(2, 2, 7)
等腰三角形 的數量	1×11=11 個	3×11=33 個	3×11=33 個	1×11=11 個	1×11=11 個
總數		11+33+33+33	+11+11+33+33+1	1+11=220 個	

在正十一邊形中,黑點分布為等腰三角形的情況依然會發生被自己吃掉的情形。所以黑點分布為(1,1,9)、(1,5,5)、(2,2,7)、(3,3,5)、(3,4,4)的等腰三角形類型都會少一個跟自己一樣的分布類型。但經由我們反複檢視之前的結果發現,在正四邊形黑點分布(1,1,2)、正八邊形黑點分布(2,2,4)中,這兩個黑點分布為等腰三角形類型都不會吃掉跟自己相同分布的等腰

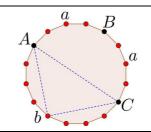
三角形類型。所以我們就猜測正n邊形,若n為4的倍數且前兩位數字和等於第三位的數值, 那麼其等腰三角形類型就不會被吃掉。

(7)正十二邊形

止丁一選形				
正n邊形		正十二	二邊形	
黑點分布 種類圖				
黑點分布	(1, 1, 10)	(1, 2, 9)	(1, 3, 8)	(1, 4, 7)
等腰三角形分 布類型	(2, 5, 5)	(1, 1, 10) (2, 5, 5)	(2, 2, 8) $(4, 4, 4)$	(2, 2, 8) (4, 4, 4)
等腰三角形的 數量	1×12=12 個	2×12=24 個	2×12=24 個	2×12=24 個
黑點分布 種類圖				
黑點分布	(1, 5, 6)	(2, 2, 8)	(2, 3, 7)	(2, 4, 6)
等腰三角形分 布類型	(3, 3, 6)	(1, 1, 10) $(2, 5, 5)$ $(4, 4, 4)$	(1, 1, 10) (2, 5, 5)	(1, 1, 10) $(2, 2, 8)$ $(2, 5, 5)$ $(3, 3, 6)$
等腰三角形的 數量	1×12=12 個	3×12=36 個	2×12=24 個	4×12=48 個
黑點分布 種類圖				
黑點分布	(2, 5, 5)	(3, 3, 6)	(3, 4, 5)	(4, 4, 4)
等腰三角形分 布類型	(1, 1, 10)	(3, 3, 6)	(2, 2, 8) $(4, 4, 4)$	(2, 2, 8)
等腰三角形的 數量	1×12=12 個	1×12=12 個	2×12=24 個	1×12=12 個
總數	12+24-	+24+24+12+36+24+	48+12+12+24+12=	264 個

在正十二邊形中,因為剛好邊數是 4 的倍數,所以我們就先觀察黑點分布為(3,3,6)是否符合我們的猜測,其中前兩位數的和剛好等於第三位 3+3=6,透過畫圖的方式我們真的可以找到一組等腰三角形類型為(3,3,6)。其他黑點分布為等腰三角形的類型依然是處於被吃掉的狀態。

- 4. 正多邊形有三個黑點和等腰三角形分布類型之性質 總結以上圖表中所觀察到的現象,我們整理並說明如下:
- (2)每一組正n邊形中的等腰三角形分布類型都會有n個等腰三角形。這個性質同之前的兩黑點就不再圖示說明。
- (3)在正n 邊形黑點分布(a,b,c) 中,若任兩位數的和a+b 為偶數,則可拆解為 $\left(\frac{a+b}{2},\frac{a+b}{2},c\right)$,n=a+b+c。 圖示說明如下 $(以 n=11 \cdot n=12$ 舉例說明):


	正n邊形, n為偶數	正n邊形,n為奇數
a為偶數 、 b為偶數	a c $a+b$ c $a+b$ c $a+b$ c	$c^{\frac{a+b}{2}}$
a 為奇數 、 b 為奇數	a b c $a + b$ c	a c $a+b$ c $a+b$ c

同理,若a+c、b+c 為偶數,那麼就可分別拆解為 $\left(\frac{a+c}{2},\frac{a+c}{2},b\right)$ 、 $\left(\frac{b+c}{2},\frac{b+c}{2},a\right)$ 。

(4)在正n邊形黑點分布也為等腰三角形中,除了其中兩位數字和等於第三位數值的情況,其 他是不存在跟黑點分布一樣的等腰三角形類型。圖示如下(以n=13、14、16舉例說明):

黑點分佈 (a,a,b)	圖示	說明
a+a+b=n n為奇數	A a B a a C	圖形中只能由 AC 之間找到等腰三角形(5,5,3),而(3,3,7)類型的等腰三角形頂點被 B 點給佔據。
a+a+b=n n為偶數 且n不為 4 倍數	A a B a c	圖形中只能由 AC 之間找到等腰三角形 (4,4,6),而 (3,3,8) 類型的等腰三角形 頂點被 B 點給佔據。

a+a+b=n
n為偶數
且a+a=b
⇒n為4倍數

圖形中除了可以在 AC 之間找 (6,6,4)之外,還可以在 B 點對面找到與黑點分布相同的 (4,4,8)。

(5)在正n 邊形黑點分布為(a,a,a) 且a 為奇數的類型中,是完全沒有等腰三角形類型。

若 a 為偶數的類型中,(a,a,a) 類型的等腰三角形一樣會被吃掉,只剩 $(\frac{a}{2},\frac{a}{2},n-a)$ 。

圖示說明如下:

圖示	說明
A · · ·	黑點分布(a,a,a),且a為奇數
В	$\Rightarrow a+a$ 為偶數,原本應該有 $\left(\frac{a+a}{2},\frac{a+a}{2},a\right)$ 的等腰三角形類型,但
C	紅色頂點的位置被最後一個黑點給佔據了。
$A_{\frac{a}{2}}$	黑點分布(a,a,a),且a為偶數
n-a B	同上依然沒有(a,a,a)的等腰三角形類型,但因為邊數為偶數,所以
C	會有 $(\frac{a}{2},\frac{a}{2},n-a)$ 這類型的等腰三角形。

(四)證明正多邊形有三個黑點的等腰三角形個數之公式

在有了正多邊形三個黑點的相關性質之後,我們就利用 EXCEL 整理這些資料,也由於有我們製定的座標表示法,所以很容易的把n推進到 25。在之前的性質觀察中我們發現需要把正多邊形邊數的型態分為三類,依序為奇數、偶數(不為 4 的倍數)、偶數(4 的倍數)來討論。

1. 正多邊形邊數為奇數的公式推導

藉由之前歸納出的性質,可以較容易把正多邊形邊數為奇數的表格整理如下:

邊數	5		7		9		11		13		15		17		19		21		23		25	
	(1,1,3)	1	(1,1,5)	1	(1,1,7)	1	(1,1,9)	1	(1,1,11)	1	(1,1,13)	1	(1,1,15)	1	(1,1,17)	1	(1,1,19)	1	(1,1,21)	1	(1,1,23)	1
	(1,2,2)	1	(1,2,4)	3	(1,2,6)		(1,2,8)	3	(1,2,10)	3	(1,2,12)	3	(1,2,14)	3	(1,2,16)	3	(1,2,18)	3	(1,2,20)	3	(1,2,22)	3
	以	2	(1,3,3)	1	(1,3,5)	3	(1,3,7)	3	(1,3,9)	3	(1,3,11)	3	(1,3,13)	3	(1,3,15)	3	(1,3,17)	3	(1,3,19)	3	(1,3,21)	3
	上	闪	(2,2,3)	1	(1,4,4)		(1,4,6)	3	(1,4,8)	3	(1,4,10)	3	(1,4,12)	3	(1,4,14)	3	(1,4,16)	3	(1,4,18)	3	(1,4,20)	3
	為	上		6	(2,2,5)	1	(1,5,5)	1	(1,5,7)	3	(1,5,9)	3	(1,5,11)	3	(1,5,13)	3	(1,5,15)	3	(1,5,17)	3	(1,5,19)	3
	黑	為			(2,3,4)	3	(2,2,7)	1	(1,6,6)	1	(1,6,8)	3	(1,6,10)	3	(1,6,12)	3	(1,6,14)	3	(1,6,16)	3	(1,6,18)	3
	點	等			(3,3,3)	0	(2,3,6)	3	(2,2,9)	1	(1,7,7)	1	(1,7,9)	3	(1,7,11)	3	(1,7,13)	3	(1,7,15)	3	(1,7,17)	3
	分	腰				12	(2,4,5)	3	(2,3,8)	3	(2,2,11)	1	(1,8,8)	1	(1,8,10)	3	(1,8,12)	3	(1,8,14)	3	(1,8,16)	3
	布	三					(3,3,5)	1	(2,4,7)	3	(2,3,10)	3	(2,2,13)	1	(1,9,9)	1	(1,9,11)	3	(1,9,13)	3	(1,9,15)	3
	類	角					(3,4,4)	1	(2,5,6)	3	(2,4,9)	3	(2,3,12)	3	(2,2,15)	1	(1,10,10)	1	(1,10,12)	3	(1,10,14)	3
	形	形						20	(3,3,7)	1	(2,5,8)	3	(2,4,11)	3	(2,3,14)	3	(2,2,17)	1	(1,11,11)	1	(1,11,13)	3
		類							(3,4,6)	3	(2,6,7)	3	(2,5,10)	3	(2,4,13)	3	(2,3,16)	3	(2,2,19)	1	(1,12,12)	1
		形							(3,5,5)	1	(3,3,9)	1	(2,6,9)	3	(2,5,12)	3	(2,4,15)	3	(2,3,18)	3	(2,2,21)	1
	-	組	_				_		(4,4,5)	1	(3,4,8)	3	(2,7,8)	3	(2,6,11)	3	(2,5,14)	3	(2,4,17)	3	(2,3,20)	3
	·	數								30	(3,5,7)	3	(3,3,11)	1	(2,7,10)	3	(2,6,13)	3	(2,5,16)	3	(2,4,19)	3

1	i	1	i	1 1	ı	1	İ	Ì	 (0.00	1	(0.1.10)	١.	(2.0.0)		(2.5.12)	١ ۵	(2 (15)		(2.5.4.0)	١.,
									(3,6,6)	1	(-) -) /			3	(2,7,12)	3	(2,6,15)	3	(2,5,18)	3
									(4,4,7)	1	(3,5,9)	3	(3,3,13)	1	(2,8,11)	3	(2,7,14)	3	(2,6,17)	3
									(4,5,6)	3	(3,6,8)	3		3	(2,9,10)	3	(2,8,13)	3	(2,7,16)	3
									(5,5,5)	0	(3,7,7)	1	(3,5,11)	3	(3,3,15)	1	(2,9,12)	3	(2,8,15)	3
										42	(4,4,9)	1	(3,6,10)	3	(3,4,14)	3	(2,10,11)	3	(2,9,14)	3
											(4,5,8)	3		3	(3,5,13)	3	(3,3,17)	1	(2,10,13)	3
											(4,6,7)	3		1	(3,6,12)	3	(3,4,16)	3	(2,11,12)	3
											(5,5,7)	1	(-) -) /	1	(3,7,11)	3	(3,5,15)	3	(3,3,19)	1
											(5,6,6)	1	(4,5,10)	3	(3,8,10)	3	(3,6,14)	3	(3,4,18)	3
												56	(4,6,9)	3	(3,9,9)	1	(3,7,13)	3	(3,5,17)	3
													(4,7,8)	3	(4,4,13)	1	(3,8,12)	3	(3,6,16)	3
													(5,5,9)	1	(4,5,12)	3	(3,9,11)	3	(3,7,15)	3
													(5,6,8)	3	(4,6,11)	3	(3,10,10)	1	(3,8,14)	3
													(5,7,7)	1	(4,7,10)	3	(4,4,15)	1	(3,9,13)	3
													(6,6,7)	1	(4,8,9)	3	(4,5,14)	3	(3,10,12)	3
														72	(5,5,11)	1	(4,6,13)	3	(3,11,11)	1
															(5,6,10)	3	(4,7,12)	3	(4,4,17)	1
															(5,7,9)	3	(4,8,11)	3	(4,5,16)	3
															(5,8,8)	1	(4,9,10)	3	(4,6,15)	3
															(6,6,9)	1	(5,5,13)	1	(4,7,14)	3
															(6,7,8)	3	(5,6,12)	3	(4,8,13)	3
															(7,7,7)	0	(5,7,11)	3	(4,9,12)	3
																90	(5,8,10)	3	(4,10,11)	3
																	(5,9,9)	1	(5,5,15)	1
																	(6,6,11)	1	(5,6,14)	3
																	(6,7,10)	3	(5,7,13)	3
																	(6,8,9)	3	(5,8,12)	3
																	(7,7,9)	1	(5,9,11)	3
																	(7,8,8)	1	(5,10,10)	1
																		110	(6,6,13)	1
																			(6,7,12)	3
																			(6,8,11)	3
																			(6,9,10)	3
																			(7,7,11)	1
																			(7,8,10)	3
																			(7,9,9)	1
																			(8,8,9)	1
																			(0,0,7)	132
					l	l														102

表格(一)正多邊形邊數為奇數之黑點分布與等腰三角形類型組數分配表 從表格(一)的顏色分布我們可以觀察到在黑點分布開頭數字相同的個數成等差數列,且其中 的等腰三角形類型個數也有一些規律。為了方便計算跟證明公式,我們又把表格(一)轉換成 黑點分布個數與其相對應等腰三角形類型分布組數。如下表:

邊數		3	等腰組數	5	等腰組數	7	等腰組數	9	等腰組數	11	等腰組數	13	等腰組數	15	等腰組數	17	等腰組數	19	等腰組數	21	等腰組數	23	等腰組數	25	等腰組數	固定開頭下 的組數規律
開頭	1	0		2	2	3	5	4	8	5	11	6	14	7	17	8	20	9		10		11		12		1,3,3,,1
開頭	2					1	1	2	4	3	7	4	10	5	13	6	16	7	19	8	22	9	25	10	28	1,3,,3
開頭	3							1	0	2	2	3	5	4	8	5	11	6	14	7	17	8	20	9	23	1,3,3,,1
開頭	4											1	1	2	4	3	7	4	10	5	13	6	16	7	19	1,3,,3
開頭	5													1	0	2	2	3	5	4	8	5	11	6	14	1,3,3,,1
開頭	6																	1	1	2	4	3	7	4	10	1,3,,3
開頭	7																			1	0	2	2	3	5	1,3,3,,1
開頭	8																							1	1	1,3,,3

表格(二)正多邊形邊數為奇數之黑點分布個數與其相對應等腰三角形類型組數表

由表格(二)中我們發現邊數 3、9、15、21 的黑點分布個數有相同性(由下往上看),邊數 5、11、17、23 也有相同的特徵,邊數 7、13、19、25 同上。舉邊數 25 為例子解說,可以發現等腰三角形類型組數有呈現兩組等差的現象,其中 32、23、14、5 公差為-9,28、19、10、1 公差也為-9。所以在推導的過程中是把邊數分為 3 大類,而在某個邊數之下又對黑點分布類型分別(奇數項、偶數項)去計算等腰三角形類型的組數個數。證明過程如下:

類型	分別(可數以	貝 \ 1	禺數項)去計算等腰三角形類型的組數個數。證明過程如下:
	T	ı	證明過程
邊	n = 2m + 1	奇	在邊數=n時,黑點分布類型數= $\left[\frac{n}{3}\right]$ = $\left[\frac{6p+1}{3}\right]$ = $\left[2p+\frac{1}{3}\right]$ = $2p$
數	m=3p	數	 ⇒ 奇數項有 p 個,偶數項有 p 個
n	$m \in N$	項	奇數項等腰三角形類型個數的首項 $a_1 = n + m - 5$ 、公差 = -9
為		和	可数項子胺二月 D 類至個数的自有 $u_1 = n + m = 3$ 名 $z = -p$
奇			奇數項等腰三角形類型個數的末項 $a_k = (n+m-5)+(k-1)(-9)$
數			$a_k = -9k + 9p + 5$
			其中 k 為黑點分布類型數中奇數項的個數,所以 $k=p$
			$a_p = -9p + 9p + 5 = 5$
			⇒奇數項等腰三角形類型個數總和 $\frac{(9p-4+5)\times p}{2}$
		偶	偶數項等腰三角形類型個數的首項 $b_1 = n + m - 9 = 9p - 8$ 、公差 $= -9$
		數	偶數項等腰三角形類型個數的末項 $b_k = (9-8) + (k-1)(-9) = 9p-3p$
		項	其中 k 為黑點分布類型數中偶數項的個數,所以 $k=p$
		和	$\Rightarrow b_p = 9p - 9k + 1 = 1$
			⇒偶數項等腰三角形類型個數總和= $\frac{(9p-8+1)\times p}{2}$
		總	等腰三角形組數個數總和=
		和	$\frac{(9p-4+5)\times p}{2} + \frac{(9p-8+1)\times p}{2} = \frac{n^2 - 4n + 3}{4} \cdot \dots \cdot (\texttt{\textsterling} \ \mathbb{R} \ 1)$
	2 1	<u> </u>	$\lceil n \rceil \lceil 6n+5 \rceil \lceil 2 \rceil$
	n = 2m + 1	奇	在邊數=n時, 黑點分布類型數= $\left\lceil \frac{n}{3} \right\rceil = \left\lceil \frac{6p+5}{3} \right\rceil = \left\lceil 2p+1+\frac{2}{3} \right\rceil = 2p+1$
	m = 3p + 1	數	→ 奇數項有 p+1組,偶數項有 k 組
	$m \in N$	項	奇數項等腰三角形類型個數的首項 $a_1 = n + m - 5 = 9p - 1 \cdot d = -9$
		和	奇數項等腰三角形類型個數的末項 $a_k = -9k + 9p + 8$
			其中 k 為黑點分布類型數中奇數項的個數,所以 k = p+1
			$\Rightarrow a_{p+1} = 9p - 9p - 1 = -1 (不合, 故末項為前一項)$
			$\Rightarrow a_p = 9p - 9p + 8 = 8$
			p 'r 'r ' -

			⇒奇數項等腰三角形類型個數總和= $\frac{(9p-1+8)p}{2}$
		偶數項和	偶數項等腰三角形類型個數的首項 $b_1 = n + m - 9 = 9p - 5$ 、 $d = -9$ 偶數項等腰三角形類型個數的末項 $b_k = 9p - 9k + 4$ 其中 k 為黑點分布類型數中偶數項的個數,所以 $k = p$ $\Rightarrow b_p = 9p - 9p + 4 = 4$ \Rightarrow 偶數項等腰三角形類型個數總和= $\frac{(9p - 5 + 4)p}{2}$
		總	等腰三角形組數個數總和=
			$\frac{(9p-1+8)p}{2} + \frac{(9p-5+4)p}{2} = \frac{n^2 - 4n + 3}{4} \cdot \dots \cdot (\text{\textit{kf}} \ \mathbb{R} \ 2)$
	n = 2m + 1	奇业	在邊數=n時,黑點分布類型數= $\left[\frac{n}{3}\right]$ = $\left[\frac{6p+5}{3}\right]$ = $\left[2p+1+\frac{2}{3}\right]$ = $2p+1$
	m = 3p + 2	數一工	→ 本數百去 n 1 1 如 , 便數百去 n ,
	$m \in N$	項	ightharpoonup i
		和	奇數項等腰三角形類型個數的首項 $a_1 = n + m - 5 = 9p + 2 \cdot d = -9$
			奇數項等腰三角形類型個數的末項 $a_k = 9p - 9k + 1$
			其中 k 為黑點分布類型數中奇數項的個數,所以 $k=p+1$
			$\Rightarrow a_{p+1} = 9p - 9p + 2 = 2$
			⇒奇數項等腰三角形類型個數總和= $\frac{(9p+2+2)(p+1)}{2}$
		偶	偶數項等腰三角形類型個數的首項 $b_1 = n + m - 9 = 9p - 2 \cdot d = -9$
		數	偶數項等腰三角形類型個數的末項 $b_p = 9p - 9k + 7$
		西	其中 k 為黑點分布類型數中偶數項的個數,所以 $k=p$
		和	$\Rightarrow b_p = 9p - 9p + 7 = 7$
			$\Rightarrow b_p = 9p - 9p + 7 = 7$ $\Rightarrow 偶數項等腰三角形類型個數總和 = \frac{(9p - 2 + 7)p}{2}$
		總	等腰三角形組數個數總和
			$= \frac{(9p+2+2)(p+1)}{2} + \frac{(9p-2+7)p}{2} = \frac{n^2 - 4n + 3}{4} \cdot \dots \cdot (\text{ if } \mathbb{R} 3)$
邊梦	數為奇數的領	· 摩腰:	三角形個數 $n^2 - 4n + 3$ $n(n-1)(n-3)$
			三角形個數 $\frac{n^2 - 4n + 3}{4} \times n = \frac{n(n-1)(n-3)}{4}$ 1)、(結果 2)、(結果 3)的相等可以知道在正多邊形中,邊數為奇數的圖
႕ L	工战明由(4	1 田	1),(从田勺),(从田勺)从扣签可以仁兴大工夕息取由,息舭为大舭从回

由上面證明中(結果 1)、(結果 2)、(結果 3)的相等可以知道在正多邊形中,邊數為奇數的圖形之中都會有 $\frac{n^2-4n+3}{4}$ 個等腰三角形類型個數,因此共會有 $\frac{n(n-1)(n-3)}{4}$ 個等腰三角形。舉例說明,當邊數為 15 時,會有 42 組共 630 個等腰三角形。

2. 正多邊形邊數為偶數(不為 4 倍數)的公式推導

同上,我們也把邊數為偶數但不為4倍數的資料整理如下:

邊數	6	<u> </u>	10	<u> </u>	14	1	18		22		26		30		34	
	(1,1,4)	1	(1,1,8)	1	(1,1,12)	1	(1,1,16)	1	(1,1,20)	1	(1,1,24)	1	(1,1,28)	1	(1,1,32)	1
	(1,2,3)	2	(1,2,7)	2	(1,2,11)	2	(1,2,15)	2	(1,2,19)	2	(1,2,23)	2	(1,2,27)	2	(1,2,31)	2
	(2,2,2)	1	(1,3,6)	2	(1,3,10)	2	(1,3,14)	2	(1,3,18)	2	(1,3,22)	2	(1,3,26)	2	(1,3,30)	2
			(1,4,5)	2	(1,4,9)	2	(1,4,13)	2	(1,4,17)	2	(1,4,21)	2	(1,4,25)	2	(1,4,29)	2
		4	(2,2,6)	3	(1,5,8)	2	(1,5,12)	2	(1,5,16)	2	(1,5,20)	2	(1,5,24)	2	(1,5,28)	2
			(2,3,5)	2	(1,6,7)	2	(1,6,11)	2	(1,6,15)	2	(1,6,19)	2	(1,6,23)	2	(1,6,27)	2
			(2,4,4)	3	(2,2,10)	3	(1,7,10)	2	(1,7,14)	2	(1,7,18)	2	(1,7,22)	2	(1,7,26)	2
			(3,3,4)	1	(2,3,9)	2	(1,8,9)	2	(1,8,13)	2	(1,8,17)	2	(1,8,21)	2	(1,8,25)	2
					(2,4,8)	6	(2,2,14)	3	(1,9,12)	2	(1,9,16)	2	(1,9,20)	2	(1,9,24)	2
				16	(2,5,7)	2	(2,3,13)	2	(1,10,11)	2	(1,10,15)	2	(1,10,19)	2	(1,10,23)	2
					(2,6,6)	3	(2,4,12)	6	(2,2,18)	3	(1,11,14)	2	(1,11,18)	2	(1,11,22)	2
					(3,3,8)	1	(2,5,11)	2	(2,3,17)	2	(1,12,13)	2	(1,12,17)	2	(1,12,21)	2
					(3,4,7)	2	(2,6,10)	6	(2,4,16)	6	(2,2,22)	3	(1,13,16)	2	(1,13,20)	2
					(3,5,6)	3	(2,7,9) (2,8,8)	3	(2,5,15)	2	(2,3,21)	2	(1,14,15)	3	(1,14,19)	2
					(4,4,6)	1	(3,3,12)	1	(2,6,14) (2,7,13)	6	(2,4,20) (2,5,19)	6 2	(2,2,26) (2,3,25)	2	(1,15,18) (1,16,17)	2
					(4,3,3)	1	(3,4,11)	2	(2,8,12)	6	(2,6,18)	6	(2,4,24)	6	(2,2,30)	3
						36		2	(2,9,11)	2	(2,7,17)	2	(2,5,23)	2	(2,3,29)	2
						50	(3,6,9)	2	(2,10,10)	3	(2,8,16)	6	(2,6,22)	6	(2,4,28)	6
							(3,7,8)	2	(3,3,16)	1	(2,9,15)	2	(2,7,21)	2	(2,5,27)	2
							(4,4,10)	3	(3,4,15)	2	(2,10,14)	6	(2,8,20)	6	(2,6,26)	6
							(4,5,9)	2	(3,5,14)	2	(2,11,13)	2	(2,9,19)	2	(2,7,25)	2
							(4,6,8)	6	(3,6,13)	2	(2,12,12)	3	(2,10,18)	6	(2,8,24)	6
							(4.7.7)	1	(3,7,12)	2	(3,3,20)	1	(2,11,17)	2	(2,9,23)	2
							(5,5.8)	1	(3,8,11)	2	(3,4,19)	2	(2,12,16)	6	(2,10,22)	6
							(5.6.7)	2	(3,9,10)	2	(3,5,18)	2	(2,13,15)	2	(2,11,21)	2
							(6,6,6)	1	(4,4,14)	3	(3,6,17)	2	(2,14,14)	3	(2,12,20)	6
									(4,5,13)	2	(3,7,16)	2	(3,3,24)	1	(2,13,19)	2
								64	(4,6,12)	6	(3,8,15)	2	(3,4,23)	2	(2,14,18)	6
									(4,7,11)	2	(3,9,14)	2	(3,5,22)	2	(2,15,17	2
									(4,8,10)	6	(3,10,13)	2	(3,6,21)	2	(2,16,16)	3
									(4,9,9)	1	(3,11,12)	2	(3,7,20)	2	(3,3,28)	1
									(5,5,12)	1	(4,4,18)	3	(3,8,19)	2	(3,4,27)	2
									(5,6,11) (5,7,10)	2	(4,5,17)	2	(3,9,18)	2	(3,5,26)	2
									(5,8,9)	2	(4,6,16) (4,7,15)	6 2	(3,10,17) (3,11,16)	2	(3,6,25) (3,7,24)	2
									(6,6,10)	3	(4,8,14)	6	(3,12,15)	2	(3,8,23)	2
									(6,7,9)	2	(4,9,13)	2	(3,13,14)	2	(3,9,22)	2
									(6,8,8)	3	(4,10,12)	6	(4,4,22)	3	(3,10,21)	2
									(7,7,8)		(4,11,11)	1	(4,5,21)	2	(3,11,20)	2
									(1,1,0)		(5,5,16)	1	(4,6,20)	6	(3,12,19)	2
										100		2	(4,7,19)	2	(3,13,18)	2
											(5,7,14)	2	(4,8,18)	6	(3,14,17)	2
											(5,8,13)	2	(4,9,17)	2	(3,15,16)	2
											(5,9,12)	2	(4,10,16)	6	(4,4,26)	3
											(5,10,11)	2	(4,11,15)	2	(4,5,25)	2
											(6,6,14)	3	(4,12,14)	6	(4,6,24)	6
											(6,7,13)	2	(4,13,13)	1	(4,7,23)	2
											(6,8,12)	6	(5,5,20)	1	(4,8,22)	6
											(6,9,11)	2	(5,6,19)	2	(4,9,21)	2
<u> </u>											(6,10,10)	3	(5,7,18)	2	(4,10,20)	6
<u> </u>		<u> </u>									(7,7,12)	1	(5,8,17)	2	(4,11,19)	2
											(7,8,11)	2	(5,9,16)	2	(4,12,18)	6
											(7,9,10)	2	(5,10,15)	2	(4,13,17)	2
<u> </u>											(8,8,10) (8,9,9)	3	(5,11,14) (5,12,13)	2	(4,14,16) (4,15,15)	6
		-		-		-					(0,9,9)	1	(6,6,18)	3	(5,5,24)	1
												144	(6,7,17)	2	(5,6,23)	2
<u> </u>		-		-		-						174	(6,8,16)	6	(5,7,22)	2
<u> </u>		-		-		-							(6,9,15)	2	(5,8,21)	2
													(6,10,14)	6	(5,9,20)	2
		1		-		-							(6,11,13)	2	(5,10,19)	2
													(6,12,12)	3	(5,11,18)	2
													(7,7,16)	1	(5,12,17)	2
													(7,8,15)	2	(5,13,16)	2
					1		1		1		ı		(.,0,20)	<u> </u>	(-,20,20)	

i	ı	İ	ı	İ	ı	Ì	ı	Ì	i	Ì	ı	(7.0.14)	ا ما	(E 1 / 1 E)	1 ~
												(7,9,14)	2	(5,14,15)	2
												(7,10,13)	2	(6,6,22)	3
												(7,11,12)	2	(6,7,21)	2
												(8,8,14)	3	(6,8,20)	6
												(8,9,13)	2	(6,9,19)	2
												(8,10,12)	6	(6,10,18)	(
												(8,11,11)	1	(6,11,17)	2
												(9,9,12)	1	(6,12,16)	(
												(9,10,11)	2	(6,13,15)	2
												(10,10,10)	1	(6,14,14)	3
														(7,7,20)	1
													196	(7,8,19)	2
														(7,9,18)	2
														(7,10,17)	2
														(7,11,16)	2
														(7,12,15)	2
														(7,13,14)	2
														(8,8,18)	1
														(8,9,17)	2
														(8,10,16)	6
														(8,11,15)	2
														(8,12,14)	(
														(8,13,13)]
														(9,9,16)	1
														(9,10,15)	2
														(9,11,14)	2
														(9,12,13)	2
														(10,10,14)	3
														(10,11,13)	2
														(10,12,12)	3
														(11,11,12)	1
														(-1,11,12)	H
															25
 16 (-	<u> </u>	h . A -	1.6	L 12 1-		(- V	<u> </u>	N 10 N 1	_			晒一名工		-1	

表格(三)正多邊形邊數為偶數(不為 4 倍數)之黑點分布與等腰三角形類型組數分配表有了表格(三)之後,我們一樣可以從相同顏色的區塊去觀察出他們之間的相同規律,比如(1,,)類型的等腰三角形類型組數都是 1 開頭之後都是 2。(2,,)類型的等腰三角形類型組數開頭、結尾都 3,中間都是 2、6。以此類推,再把每個顏色的等腰三角形個數加總整理如下:

		等		等		等		等		等		等		等		等	
邊數	6	腰	10	腰	14	腰	18	腰	22	腰	26	腰	30	腰	34	腰	固定開頭下
		組		組		組		組		組		組		組		組	的組數規律
		數		數		數		數		數		數		數		數	
開頭1	2	3	4	7	6	11	8	15	10	19	12	23	14	27	16	31	1,2,2,,2
開頭2	1	1	3	8	5	16	7	24	9	32	11	40	13	48	15	56	3,2,6,,3
開頭3			1	1	3	5	5	9	7	13	9	17	11	21	13	25	1,2,2,,2
開頭4					2	4	4	12	6	20	8	28	10	36	12	44	3,2,6,,1
開頭5							2	3	4	7	6	11	8	15	10	19	1,2,2,,2
開頭6							1	1	3	8	5	16	7	24	9	32	3,2,6,,3
開頭7									1	1	3	5	5	9	7	13	1,2,2,,2
開頭8											2	4	4	12	6	20	3,2,6,,1
開頭9													2	3	4	7	1,2,2,,2
開頭 10													1	1	3	8	3,2,6,,3
開頭 11															1	1	1,2,2,,2

表格(四)正多邊形邊數為偶數(不為 4 倍數)之黑點分布個數與其相對應等腰三角形類型組數表由表格(四)一樣可以看出我們需要再把這些邊數分為 3 類,例如邊數 10、22、34,他們的等

腰三角形類型個數由下往上看都會是 $1 \times 8 \times 7 \times 20 \times 13 \times \dots$,所以我們把這些邊數當做同一類型。在邊數 34 之中一樣可以分為兩個等差數列,分別為 $31 \times 25 \times 19 \times 13 \times 7 \times 1$ 與 $56 \times 44 \times 32 \times 20 \times 8$ 。其他以此類推,證明如下:

			證明過程
邊數	n = 4m + 2 $m = 3p$	奇數	在邊數= n 時, 黑點分布類型數 $\left[\frac{n}{3}\right]$ = $4p$ 組
n 4	$m \in N$	項	⇒奇數項有2p組,偶數項有2p組
為偶		和	奇數項等腰三角形類型個數的首項 $a_1 = n - 3 = 12p - 1 \cdot d = -6$
數			奇數項等腰三角形類型個數的末項 $a_k = (n-3) + (k-1) \times (-6)$
			=12p-6k+5
			其中 k 為黑點分布類型中奇數項的個數,所以 $k=2p$
			$\Rightarrow a_{2p} = 12p - 12p + 5 = 5$
			⇒奇數項等腰三角形類型個數總和 $\frac{(12p-1+5)(2p)}{2}$
		偶	偶數項等腰三角形類型個數的首項 $b_{\rm l}=2n-12=24p-8$ 、 $d=-12$
		數	偶數項等腰三角形類型個數的末項 $b_k = (2n-12) + (k-1) \times (-12)$
		項	=24p-12k+4
		和	其中 k 為黑點分布類型中偶數項的個數,所以 $k=2p$
			$\Rightarrow a_{2p} = 24p - 24p + 4 = 4$
			⇒偶數項等腰三角形類型個數總和= $\frac{(24p-8+4)(2p)}{2}$
		總	等腰三角形組數個數總和
		和	$= \frac{(12p-1+5)(2p)}{2} + \frac{(24p-8+4)(2p)}{2} = \frac{n^2-4n+4}{4} \cdot \dots \cdot (\texttt{\texttt{k}} + \texttt{\texttt{l}})$
	n = 4m + 2 $m = 3p + 1$	奇數	在邊數= n 時,黑點分布類型數 $\left[\frac{n}{3}\right]$ = $4p+2$ 組
	$m \in N$	項	⇒奇數項有 $2p+1$ 組,偶數項有 $2p+1$ 組
		和	奇數項等腰三角形類型個數的首項 $a_1 = n-3 \cdot d = -6$
			奇數項等腰三角形類型個數的末項 $a_k = (n-3) + (k-1)(-6)$
			=12p-6k+9
			其中 k 為黑點分布類型中奇數項的個數,所以 $k=2p+1$
			$a_{2p+1} = 12p - 12p - 6 + 9 = 3$
			⇒ 奇數項等腰三角形類型個數總和 = $\frac{(12p+3+3)(2p+1)}{2}$

	偶	偶數項等腰三角形類型個數的首項 $b_1 = 2n + 12 = 24p \cdot d = -12$
	數	偶數項等腰三角形類型個數的末項 $b_k = (2n-12) + (k-1)(-12)$
	項	=24p-12k+12
	和	其中 k 為黑點分布類型中偶數項的個數,所以 $k=2p+1$
		$\Rightarrow b_{2p+1} = 24p - 24p - 12 + 12 = 0$
		⇒偶數項等腰三角形類型個數總和 $\frac{(24p+0)(2p+1)}{2}+1$
		(組數+1是因為最後一項不符和等差數列的性質)
	總	等腰三角形組數個數總和=
	和	$\frac{(12p+3+3)(2p+1)}{2} + \frac{(24p+0)(2p+1)}{2} + 1 = \frac{n^2 - 4n + 4}{4} \cdot \dots \cdot (\sharp \mathbb{R} \ 2)$
m = 4m + 2 $m = 3p + 2$	•	在邊數= n ,黑點分布類型數 $\left[\frac{n}{3}\right]$ = $4p+3$ 組
$m \in N$	項	⇒奇數項有 $2p+2$ 組,偶數項有 $2p+1$ 組
	和	奇數項等腰三角形類型個數的首項 $a_1 = n - 3 \cdot d = -6$
		奇數項等腰三角形類型個數的末項 $a_k = (n-3) + (k-1)(-6)$
		=12p-6k+13
		其中 k 為黑點分布類型中偶數項的個數,所以 $k=2p+2$
		$\Rightarrow a_{2p+2} = 12p - 12p - 12 + 13 = 1$
		奇數項等腰三角形類型個數總和 $\frac{(12p+7+1)(2p+2)}{2}$
	偶	偶數項等腰三角形類型個數的首項 $b_1 = 2n - 12 = 24p + 8 \cdot d = -12$
	數	奇數項等腰三角形類型個數的末項 $b_k = (2n-12) + (k-1)(-12)$
	項	=24p-12k+20
	和	其中 k 為黑點分布類型中偶數項的個數,所以 $k=2p+1$
		⇒偶數項等腰三角形類型個數總和 $\frac{(24p+8+8)(2p+1)}{2}$
	總	等腰三角形組數個數總和=
	和	$(12p+7+1)(2p+2) + (24p+8+8)(2p+1) + n^2 - 4n + 4$
		$\left \frac{(12p+7+1)(2p+2)}{2} + \frac{(24p+8+8)(2p+1)}{2} \right = \frac{n^2 - 4n + 4}{4} \cdot \dots \cdot (4 + 3)$
邊數為偶數(>	不為 4	倍數)的等腰三角形個數 $n \times \frac{n^2 - 4n + 4}{4} = \frac{n(n-2)^2}{4}$
1 1 = 120 mm 1- ()	1 100 1) (从田の) (从田の)从上内签丁以上、关ナイク、皇水山、、皇机为四朝(丁

由上面證明中(結果 1)、(結果 2)、(結果 3)的相等可以知道在正多邊形中,邊數為偶數(不為 4 倍數)的圖形之中都會有 $\frac{n^2-4n+4}{4}$ 個等腰三角形類型個數,因此共會有 $\frac{n(n-2)^2}{4}$ 個等腰三角形。舉例說明,當邊數為 14 時,會有 36 組共 504 個等腰三角形。

3. 正多邊形邊數為 4 倍數的公式推導

觀察數據如下,其中我們原本已做到48,但因為數據太長所以我們只放上4~40的資料。

1/下 奴						1/1/1		150				30		-//	M 12 11			10		
邊數			8		12		16		20		24		28		32		36		40	
	(1.1.2)	1	(1.1.6)	1	(1.1.10)	1	(1.1.14)	1	(1.1.18)	1	(1,1,22)	1	(1,1,26)	1	(1,1,30)	1	(1,1,34)	1	(1,1,38)	1
	() , , ,										(1,2,21)	2	(1,2,25)	2	(1,2,29	2	(1,2,33)	2	(1,2,37)	2
		1	(, , ,		(, , ,		(, , ,		(, , ,		(, , ,									
		1									(1,3,20)		(1,3,24)	2	(1,3,28)	2	(1,3,32)	2	(1,3,36)	2
									(1,4,15)			2	(1,4,23)	2	(1,4,27)	2	(1,4,31)	2	(1,4,35)	2
			(2,3,3)	1	(1,5,6)	1	(1,5,10)	2	(1,5,14)	2	(1,5,18)	2	(1,5,22)	2	(1,5,26)	2	(1,5,30)	2	(1,5,34)	2
											(1,6,17)	2	(1,6,21)	2	(1,6,25)	2	(1,6,29)	2	(1,6,33)	2
				O	(2,2,0)	2	(1,0,2)	1	(1.7.12)	2	(1,0,17)					2				
				ō	(2,3,7)	2	(1, 7, 8)	1	(1, 1, 12)		(1,7,16)	2	(1,7,20)	2	(1,7,24)		(1,7,28)	2	(1,7,32)	2
											(1,8,15)	2	(1,8,19)	2	(1,8,23)	2	(1,8,27)	2	(1,8,31)	2
					(2,5,5)	1	(2,3,11)	2	(1,9,10)	1	(1,9,14)	2	(1,9,18)	2	(1,9,22)	2	(1,9,26)	2	(1,9,30)	2
											(1,10,13)		(1,10,17)	2	(1,10,21)	2	(1,10,25)	2	(1,10,29)	2
					(3,4,5)						(1,11,12)		(1,11,16)		(1,11,20)	2	(1,11,24)	2	(1,11,28)	2
-															(, , ,					
					(4,4,4)	1					(2,2,20)		(1,12,15)		(1,12,19)	2	(1,12,23)	2	(1,12,27)	2
							(2,7,7)	1	(2,5,13)	2	(2,3,19)	2	(1,13,14)	1	(1,13,18)	2	(1,13,22)	2	(1,13,26)	2
						23	(3.3.10)	1	(2.6.12)	6	(2,4,18)	6	(2,2,24)	3	(1,14,17)	2	(1,14,21)	2	(1,14,25)	2
											(2,5,17)	2	(2,3,23)	2	(1,15,16)	1	(1,15,20)	2	(1,15,24)	2
											(2,6,16)		(2,4,22)	6	(2,2,28)	3	(1,16,19)	2	(1,16,23)	2
							(3,6,7)	2	(2,9,9)	1	(2,7,15)	2	(2,5,21)	2	(2,3,27)	2	(1,17,18)	1	(1,17,22)	2
							(4,4,8)	3	(3,3,14)	1	(2,8,14)	6	(2,6,20)	6	(2,4,26)	6	(2,2,32)	3	(1,18,21)	2
											(2,9,13)	2	(2,7,19)	2	(2,5,25)	2	(2,3,31)	2	(1,19,20)	1
-	 	-																		
<u> </u>	ļ	-				-					(2,10,12)		(2,8,18)	6	(2,6,24)	6	(2,4,30)	6	(2,2,36)	3
							(5,5,6)	1			(2,11,11)		(2,9,17)	2	(2,7,23)	2	(2,5,29)	2	(2,3,35)	2
	1	1]			(3,7,10)			1	(2,10,16)	6	(2,8,22)	6	(2,6,28)	6	(2,4,34)	6
								46	(3,8,9)				(2,11,15)		(2,9,21)	2	(2,7,27)	2	(2,5,33)	2
 								. 5			(3,5,16)				(2,10,20)	6	(2,8,26)	6	(2,6,32)	6
 	-	-					-													
<u> </u>									(4,5,11)				(2,13,13)		(2,11,19)	2	(2,9,25)	2	(2,7,31)	2
		L									(3,7,14)	2	(3,3,22)	1	(2,12,18)	6	(2,10,24)	6	(2,8,30)	6
1	1	1				_			(4,7,9)	2	(3,8,13)	2	(3,4,21)	2	(2,13,17)	2	(2,11,23)	2	(2,9,29)	2
									(4,8,8)			1	(3,5,20)	2	(2,14,16)	5	(2,12,22)	6	(2,10,28)	6
											(3,10,11)		(3,6,19)	2	(2,15,15)	1	(2,13,21)	2	(2,11,27)	2
															(2,13,13)					
									(5,6,9)				(3,7,18)	2	(3,3,26)	1	(2,14,20)	6	(2,12,26)	6
									(5,7,8)	2	(4,5,15)	2	(3,8,17)	2	(3,4,25)	2	(2,15,19)	2	(2,13,25)	2
											(4,6,14)		(3,9,16)	2	(3,5,24)	2	(2,16,18)	5	(2,14,24)	6
									(6,7,7)				(3,10,15)		(3,6,23)	2	(2,17,17)	1	(2,15,23)	2
									(0,7,7)	1								_		
											(4,8,12)		(3,11,14)		(3,7,22)	2	(3,3,30)	1	(2,16,22)	6
										77	(4,9,11)		(3,12,13)	2	(3,8,21)	2	(3,4,29)	2	(2,17,21)	2
											(4,10,10)	3	(4,4,20)	3	(3,9,20)	2	(3,5,28)	2	(2,18,20)	5
											(5,5,14)	1	(4,5,19)	2	(3,10,19)	2	(3,6,27)	2	(2,19,19)	1
											(5,6,13)		(4,6,18)		(3,11,18)	2	(3,7,26)	2	(3,3,34)	1
																_				
											(5,7,12)		(4,7,17)	2	(3,12,17)	2	(3,8,25)	2	(3,4,33)	2
											(5,8,11)	2	(4,8,16)	6	(3,13,16)	1	(3,9,24)	2	(3,5,32)	2
											(5,9,10)	2	(4,9,15)	2	(3,14,15)	2	(3,10,23)	2	(3,6,31)	2
											(6,6,12)		(4,10,14)		(4,4,24)	3	(3,11,22)	2	(3,7,30)	2
-																				
											(6,7,11)		(4,11,13)		(4,5,23)	2	(3,12,21)		(3,8,29)	2
													(4,12,12)		(4,6,22)		(3,13,20)		(3,9,28)	2
1	1	1				_			I	_	(6,9,9)	1	(5,5,18)	1	(4,7,21)	2	(3,14,19)	2	(3,10,27)	2
													(5,6,17)			6			(3,11,26)	
 									1		(7,8,9)		(5,7,16)			2	(3,16,17)		(3,12,25)	2
—	-	-				-				1										
<u> </u>		<u> </u>				<u> </u>				<u> </u>	(8,8,8)	1			(4,10,18)	6	(4,4,28)		(3,13,24)	
<u></u>		L				L		L	<u> </u>	L			(5,9,14)		(4,11,17)	2	(4,5,27)		(3,14,23)	2
												116	(5,10,13)	2	(4,12,16)	5	(4,6,26)	6	(3,15,22)	2
													(5,11,12)		(4,13,15)	2	(4,7,25)		(3,16,21)	2
 	 	-													(4,14,14)		(4,8,24)		(3,17,20)	
<u> </u>	 									<u> </u>			(6,6,16)			3				1
										Ц.			(6,7,15)		(5,5,22)	1	(4,9,23)		(3,18,19)	2
		L				L		L	<u> </u>	L	<u> </u>		(6,8,14)	5	(5,6,21)	2	(4,10,22)	6	(4,4,32)	3
													(6,9,13)	2	(5,7,20)	2	(4,11,21)	2	(4,5,31)	2
													(6,10,12)		(5,8,19)		(4,12,20)	6		6
—	 									\vdash										
<u> </u>										—			(6,11,11)		(5,9,18)	2	(4,13,19)	2	(4,7,29)	2
		L											(7,7,14)		(5,10,17)	2	(4,14,18)		(4,8,28)	6
	1												(7,8,13)	2	(5,11,16)	1	(4,15,17)	2	(4,9,27)	2
													(7,9,12)	2	(5,12,15)	2	(4,16,16)		(4,10,26)	6
		\vdash								H			(7,10,11)		(5,13,14)	2	(5,5,26)			
-	-	<u> </u>				_				-									(4,11,25)	2
	ļ												(8,8,12)	3	(6,6,20)	3	(5,6,25)		(4,12,24)	6
	<u> </u>	L				L		L	<u> </u>	L	<u> </u>		(8,9,11)	2	(6,7,19)	2	(5,7,24)	2	(4,13,23)	2
													(8,10,10)	3	(6,8,18)	6	(5,8,23)	2		6
													(9,9,10)		(6,9,17)	2	(5,9,22)		(4,15,21)	2
-	-	-					-		-	1	1		(2,2,10)	1						
	ļ	-				-				 				4.65	(6,10,16)	5	(5,10,21)		(4,16,20)	5
														163	(6,11,15)	2	(5,11,20)	2	(4,17,19)	2
1	1	1				_			I	_	I				(6,12,14)	6	(5,12,19)	2	(4,18,18)	3
															(6,13,13)	1	(5,13,18)	1	(5,5,30)	1
 									1		1				(7,7,18)	1	(5,14,17)	2	· · · · /	2
	<u> </u>		Ī				l		l	1			l		(1,1,10)	1	(3,17,17)	4	(3,0,43)	_

	1	ı	1 1	i	ı	I	ı	1	ı	1 1		(7.0.17)	2 1	(5 15 16)	2	(5.7.20)	1 2
												(7,8,17) (7,9,16)	1	(5,15,16) (6,6,24)	3	(5,7,28) (5,8,27)	2
												(7,10,15)	2	(6,7,23)	2	(5,9,26)	2
												(7,10,13)	2	(6,8,22)	6	(5,7,20) $(5,10,25)$	2
												(7,12,13)	2	(6,9,21)	2	(5,11,24)	2
												(8,8,16)	3	(6,10,20)	6	(5,12,23)	2
												(8,9,15)	2	(6,11,19)	2	(5,13,22)	2
												(8,10,14)	6	(6,12,18)	5	(5,14,21)	2
												(8,11,13)	2	(6,13,17)	2	(5,15,20)	1
												(8,12,12)	3	(6,14,16)	6	(5,16,19)	2
												(9,9,14)	1	(6,15,15)	1	(5,17,18)	2
												(9,10,13)	2	(7,7,22)	1	(6,6,28)	3
												(9,11,12)	2	(7,8,21)	2	(6,7,27)	2
												(10,10,12)	3	(7,9,20)	2	(6,8,26)	6
												(10,11,11)	1	(7,10,19)	2	(6,9,25)	2
													210	(7,11,18) (7,12,17)	1	(6,10,24)	6
													218	(7,12,17)	2	(6,11,23) (6,12,22)	6
														(7,13,16)	2	(6,12,22)	2
														(8,8,20)	3	(6,14,20)	5
									_	\vdash				(8,9,19)	2	(6,14,20)	2
														(8,10,18)	5	(6,16,18)	6
+		+	H						\vdash					(8,11,17)	2	(6,17,17)	1
														(8,12,16)	6	(7,7,26)	1
														(8,13,15)	2	(7,8,25)	2
														(8,14,14)	3	(7,9,24)	2
														(9,9,18)	1	(7,10,23)	2
														(9,10,17)	2	(7,11,22)	2
														(9,11,16)	2	(7,12,21)	2
														(9,12,15)	2	(7,13,20)	1
														(9,13,14)	2	(7,14,19)	2
														(10,10,16)	3	(7,15,18)	2
														(10,11,15)	2	(7,16,17)	2
														(10,12,14)	6	(8,8,24)	3
														(10,13,13)	1	(8,9,23)	2
														(11,11,14)	2	(8,10,22)	6
														(11,12,13) (12,12,12)	1	(8,11,21) (8,12,20)	5
														(12,12,12)	1	(8,13,19)	2
															281		6
															201	(8,15,17)	2
																(8,16,16)	3
																(9,9,22)	1
																(9,10,21)	2
																(9,11,20)	1
																(9,12,19)	_
																(9,13,18)	
																(9,14,17)	2
																(9,15,16)	
																(10,10,20)	
		[(10,11,19)	
									_							(10,12,18)	
						ļ										(10,13,17)	
							_		_							(10,14,16)	
					-					1						(10,15,15)	
							_		_	1						(11,11,18)	
					├											(11,12,17)	
		_	H				-		_							(11,13,16)	
					-					\vdash						(11,14,15) (12,12,16)	
					-		_		_	\vdash						· / / /	
\longrightarrow		-	H				-		<u> </u>	1						(12,13,15) (12,14,14)	
					\vdash		_		_							(12,14,14) (13,13,14)	_
					<u> </u>	ļ	—			1						(13,13,14)	1

表格(五)正多邊形邊數為4倍數之黑點分布與等腰三角形類型組數分配表

有了表格(五)之後,我們一樣可以從相同顏色的區塊去觀察出它們之間的規律,比如(1, ,)類型的等腰三角形類型組數開頭和結尾都是1,中間都是2。(2, ,)類型的等腰三角形類型組數開頭是3,結尾是5、1,中間都是2、6。後面的規則都不一樣,所以我們整理出以下圖表,其規律如下:

		等		等		等		等		等		等		等		等		等		等		等		等	
	,	腰	0	腰	10		1.0	腰	0.0	腰	0.4		0.0		00		0.0		40	ı	4.4		48		固定開頭下
	4	組	8	組	12	組	16	組	20	組	24	組	28	組	32	組	36	組	40	組	44	組	48	組	的組數規律
		數		數		數		數		數		數		數		數		數		數		數		數	
開頭1	1	1	3	4	5	8	7	12	9	16	11	20	13	24	15	28	17	32	19	36	21	40	23	44	1, 2, 2,, 1
開頭2			2	4	4	11	6	19	8	27	10	35	12	43	14	51	16	59	18	67	20	75	22	83	$3, 2, 6, \dots, 5, 1$
開頭3					2	3	4	6	6	10	8	14	10	18	12	22	14	26	16	30	18	34	20	38	1, 2,, 1, 2
開頭4					1	1	3	8	5	15	7	23	9	31	11	39	13	47	15	55	17	63	19	71	3, 2, 6,, 5, 2, 3
開頭5							1	1	3	5	5	8	7	12	9	16	11	20	13	24	15	28	17	32	$1, 2, \dots, 1, 2, 2$
開頭6									2	4	4	12	6	19	8	27	10	35	12	43	14	51	16	59	$3, 2, 6, \dots, 5, 2, 6, 1$
開頭7											2	3	4	7	6	10	8	14	10	18	12	22	14	26	$1, 2, \dots, 1, 2, 2, 2$
開頭8											1	1	3	8	5	16	7	23	9	31	11	39	13	47	$3, 2, 6, \dots, 5, 2, 6, 2, 3$
開頭9													1	1	3	5	5	9	7	12	9	16	11	20	$1, 2, \dots, 1, 2, 2, 2, 2$
開頭 10															2	4	4	12	6	20	8	27	10	35	3, 2, 6, …, 5, 2, 6, 2, 6, 1
開頭 11																	2	3	4	7	6	11	8	14	1, 2,, 1, 2, 2, 2, 2, 2
開頭 12																	1	1	3	8	5	16	7	24	$3, 2, 6, \dots, 5, 2, 6, 2, 6, 2, 3$
開頭 13																			1	1	3	5	5	9	1, 2,, 1, 2, 2, 2, 2, 2, 2
開頭 14																					2	4	4	12	3, 2, 6, …, 5, 2, 6, 2, 6, 2, 6, 1
開頭 15																							2	3	1, 2,, 1, 2, 2, 2, 2, 2, 2, 2
開頭 16																							1	1	3, 2, 6,, 5, 2, 6, 2, 6, 2, 6, 2, 3

表格(六)正多邊形邊數為4倍數之黑點分布個數與其相對應等腰三角形類型組數表

由表格(六)中一樣可以發現大致有三大類,邊數為 48、36、24、12;44、32、20、8;40、28、16、4,不過在同一類之間並不是像之前的數據會完全都一樣。比如在邊數 48 裏的等腰三角形組數中不再都是兩組等差數列,而是會隨著它們所在的組數不同有時公差要加 1。會造成這個公差差異是因為黑點在(a,a,2a)4的倍數情況下等腰三角形組數會多 1 組,因此邊數除以4所在的等腰三角形組數公差會開始多 1。例如:邊數 20 中開頭 5 裏有一組(5,5,10),因此相對應的公差就由原本為-6 變成-5。另外還有(a,a,a)的情況之下,因為 a 為偶數,等腰三角形組數會有 1 組(原本是 0 組),則所在的等腰三角形組數公差會再多 1。因此在證明的過程中就要土者廣若用同樣的公差質到底,那還要要加回幾個 1。

迥在!	7	考慮若用问樣的公差昇到低,那還需要	是加 四 幾 個 1 。											
		證明立	過程											
邊	n = 4m	奇數: $a_1 = n - 4$; $d = -6$	偶數: $a_1 = 2n - 13$; $d = -12$											
數	m = 3p	$a_k = (n-4) + (k-1) \times (-6)$	$a_k = (2n-13) + (k-1) \times (-12)$											
	. · · · · · · · · · · · · · · · · · · ·	= n - 6k + 2	=2n-12k-1											
為		$a_{2p} = n - 12p + 2 = 2$	$a_{2p} = 2n - 24p - 1 = -1$											
n		1. 假設 $n = 4m$ 且 $m = 3p$												
		$\Rightarrow n = 12p 共有 \left[\frac{n}{3}\right] = 4p \text{組} \rightarrow \hat{\sigma} \text{數} : 2p \text{組}$												
		偶數	t: 2p 組											
		(1) $\frac{n}{3} = 4p \Rightarrow$ 偶數的第2 p 個 \Rightarrow 要修	正2p-2p+1=1個											
		(2) $\frac{n}{4} = 3p; \frac{n}{4} + 1 = 3p + 1$												
	若 p 為偶 \Rightarrow $3p$ 為偶數的第 $\frac{3p}{2}$ 個 \Rightarrow 要修正 $2p-\frac{3p}{2}+1=\frac{p+2}{2}=\frac{n+24}{24}$ 個													
	$\Rightarrow 3p+1$ 為奇數的第 $\frac{3p+2}{2}$ 個 \Rightarrow 要修正 $2p-\frac{3p+2}{2}+1=\frac{p}{2}=\frac{n}{24}$ 個													

 $=\frac{n^2-5+8}{4}$

$$\begin{array}{c} n=4m\\ m=\\ 3p+2\\ \hline \\ 3p+2+2\\ \hline \\ 2p+2+2\\ \hline \\$$

根據上表可得n為4的倍數時,等腰三角形的組數和皆為 $\frac{n^2-5n+8}{4}$,因此等腰三角形的總個 數為 $\frac{n^2-5n+8}{4} \times n$ 。

邊數為 4 倍數的等腰三角形個數

伍、研究結果、討論與結論

這次的研究成果在經由我們制定出的座標表示法之後使整個研究簡單化了許多,不需要 真的把圖形畫出來在慢慢的觀察與分析,只需要透過黑點分佈座標裏的數字就可以直接寫出 所包含的等腰三角形類型組數,進而得到等腰三角形個數。這座標表示方式可能也可推廣到 其他類似的幾何問題,應該也能有不錯的效果。以下是這次研究的等腰三角形個數公式表:

黑點個數	邊數n	等腰三角形個數
0	奇數	$\frac{n(n-1)}{2}$
2	偶數	$\frac{n(n-2)}{2}$
	奇數	$\frac{n(n-1)(n-3)}{4}$
3	偶數(不為4倍數)	$\frac{n(n-2)^2}{4}$
	偶數(4倍數)	$\frac{n^2 - 5n + 8}{4} \times n$

由上面的整理可以發現原來這些都是有很漂亮的規則,不過當初我們在證明黑點數 3、邊數為 4 倍數時覺得複雜度很高,因為跟我們之前熟知的等差數列規律都差一點點,找不到公差何時需要加 1。經由老師的提示:「去看看自己發現的性質,再來思考到底要在哪加 1。」之後我們就找到了癥結點,也完成了最後的證明。

未來我們想嘗試 4 個黑點的研究,但因為其座標表示法會到四個變數,且很像還會有對稱性的問題,例如:黑點分布為 (2,4,2,4) 與 (4,2,4,2) 的圖形很像會有重複性問題,我們需要把問題與等腰三角形個數的計算方式在定義的更清楚才能往下研究,其複雜度應該會更高更難處理,所以我們就想把這問題留到之後在單獨做研究,可能除了我們新創的座標表示法之外還需要有更創新的想法才行得通。

陸、參考資料及其他

一、游森棚(民 108 年 2 月)。森棚教官的數學題-七邊形之謎。科學研習期刊,58-2。取自 https://www.ntsec.edu.tw/LiveSupply-Content.aspx?cat=6842&a=6829&fld=&key=&isd=1&icop=10&p=1&lsid=15533

二、張幼賢(2013)。國中數學第四冊。翰林出版社,107年2月3版

【評語】030403

考慮將正 n 邊形的 n 個頂點任意塗上紅、黑兩色,以紅色頂點為等腰三角形頂角的頂點,兩黑點為等腰三角形的另兩個頂點,所能構造出的等腰三角形有多少個的問題。這是由科學月刊上介紹的一個問題所衍生而出的問題。問題有點奇妙,似乎與原始問題沒有太大的關連性。作者們針對這個新版本的問題做了討論,給出了部分的結果,想法頗具創意,值得嘉許。較為美中不足的是,在分析小的例子時使用了比較複雜的討論方式,在得出通則後又沒能針對這個精簡的形式做進一步深入的分析,如果作者們能從推導出的結果回頭來看問題,應該會注意到答案的形式其實是有其意義的,據此,可以給出一個更精簡而且清楚的論述,也應該可以得到一個更一般化的結果。沒有在這關鍵的一步多做發揮,有點可惜。

研究動機

老師在課堂上分享之前他帶學生做科展的經驗,我們聽完後也想嘗試,所以我們就去找老師討論,

老師叫我們到科學研習月刊上找題目,於是我們就找到游森棚教授出的這個題目, 題目的敘述如下:

正七邊形的頂點有五個紅點,兩個黑點。用紅點當頂點可以連成多少個等腰三角形?生性謹慎的小怡說:「我又不知道黑點在那裡,老師給的條件不夠,這一

大而化之的小郡說:「沒差啦,黑點在那裡算出來應該都一樣啦!」小怡說:

「怎麼可能算出來一樣?如果題目改成正六邊形,那兩個黑點在對角線的話就

沒有等腰三角形了,但是兩個黑點在其他位置就還有等腰三角形。所以答案一定和黑點位置有關啦!」小郡說:「不管啦,我們先算算看再說吧!」所以這個七邊形之謎的結果如何呢?

所以我們研究內容是找出正多邊形中以兩黑點為底角和一紅點為頂角所組成的等腰三角形個數公式。

研究目的

- 一、 找正多邊形有兩個黑點的等腰三角形個數之規律與性質。
- 二、 證明正多邊形有兩個黑點的等腰三角形個數之公式。
- 三、 找正多邊形有三個黑點的等腰三角形個數之規律與性質。
- 四、 證明正多邊形有三個黑點的等腰三角形個數之公式。

研究過程與方法

(一)找正多邊形有兩個黑點的等腰三角形個數之規律與性質

1. 正多邊形中兩個黑點之座標表示法

2. 正多邊形中三角形之座標表示法

這個正五邊形的黑點分布(2,3), 其中的2是表示兩黑點之間所包含 的正五邊形邊數,3是兩黑點之間 另外一邊所包含的正五邊形邊數。

 Δ ABC 用符號(\overline{AB} , \overline{BC} , AC) 來表示,其中 \overline{AB} 為 A 、 B 之間 所包含的多邊形邊數,所以 \overline{AB} =1、 \overline{BC} =1、 \overline{AC} =3,則其 座標表示為(1.1.3)。

3. 正多邊形有兩個黑點之等腰三角形個數研究

(1) 正八邊形、正九邊形研究(由於資料過多,故舉兩例說明)

正 /1 邊形		正ハ	邊形			正九	邊形	
黑點分布 種類圖								
黑點分布	(1,7)	(2, 6)	(3, 5)	(4, 4)	(1,8)	(2, 7)	(3, 6)	(4, 5)
等腰三形 分布類型	X	(1, 1, 6) (3, 3, 2)	X	(2, 2, 4)	(4, 4, 1)	(1, 1, 7)	(3, 3, 3)	(2, 2, 5)
等腰三角 形的數量	0個	2×8=16個	0個	1×8=8個	1×9=9個	1×9=9個	1×9=9個	1×9=9個
總數		16+8	=24 個			9+9+9+	9=36 個	

4. 正多邊形有兩黑點和等腰三角形分布類型之性質

由之前的圖表中,我們可以觀察到以下特徵:

- (1)黑點分布中,若有2就有(1,1,n-2)這種類型的等腰三角形類型,有4就有(2,2,n-4),有6就
- 有 (3,3,n-6),以此類推有 a (偶數)就有 $(\frac{a}{2},\frac{a}{2},n-a)$ 類型的等腰三角形。
- (2)每一組正n邊形中的等腰三角形分布類型都會有n個等腰三角形。

(3)正n 邊形, n 為偶數時,其黑點分布若為(奇數,奇數),則不會有等腰三角形類型出現; 正n 邊形,n 為偶數時,其黑點分布若為(偶數,偶數),就會有 2 組等腰三角形類型出現;

正n 遗形,n 為倚數時,其黑點分布若為(倚數,倘數),就管有1 組等腰三角形類型出現;正n 遗形,n 為奇數時,其黑點分布若為(奇數,偶數),就恰有1 組等腰三角形類型出現;

正n 邊形,n 為奇數時,其黑點分布若為(偶數,奇數),就恰有1 組等腰三角形類型出現。

正 n 邊形, n 為偶數	正 n 邊形, n 為奇數
(a,b), a為奇數, b為奇數, 因為只有偶數邊才能組成一個等 腰三角形,所以此黑點分布不會 有等腰三角形類型。	(a,b), a為奇數, b為偶數,所以在邊數為偶數那個方向可以形成一組等腰三角形。
(a,b), a為偶數, b為偶數,所以兩邊都可以各形成一組等腰三形。	(a,b), a 為偶數, b 為奇數,結果同上,因為只是兩個方向互換。

(二)由之前歸納出的規律與性質之後,我們就利用這些性質去證明,公式如下:

正n 邊形中等腰三角形個數= $\frac{n(n-2)}{2}$,n為偶數。正n 邊形中等腰三角形個數= $\frac{n(n-1)}{2}$,n為奇數。

- (三)找正多邊形有三個黑點的等腰三角形個數之規律與性質
- 在這個部份我們是研究所有從 3 個黑點中任挑 2 個黑點當底角頂點,再搭配一個紅點為頂角所形成的等腰三角形類型組數,其中另一個黑點是不能被當作頂角。
- 1. 正多邊形中三個黑點之座標表示法
- 在畫圖的過程中,我們延續了之前的表示法,只是現在黑點有3個,因此黑點分布的座標表示變成

(a,b,c), 說明如下:

這個正六邊形的黑點分布為(1,2,3),其中的1表示為 $A \times B$ 兩黑點之間所包含的正六邊形邊數,2是 $B \times C$ 兩黑點之間所包含的正六邊形邊數。3則是 $C \times A$ 兩黑點之間所包含的正六邊形邊數。

- 2. 正多邊形中三角形之座標表示法
- 在正多邊形有三個黑點的研究當中,這裏的等腰三角形表示法相同於兩個黑點的研究。
- 3. 正多邊形有三個黑點之等腰三角形個數研究(由於資料過多,故舉兩例說明)

20万一四	• • • • • • • • • • • • • • • • • • • •	7, 7,		, , , , , , , , , , , , , , , , , , ,		13 17 1 100 71 7			
正 n 邊形		正七	邊形				正八邊形		
黑點分布 種類圖									
黑點分布	(1, 1, 5)	(1, 2, 4)	(1, 3, 3)	(2, 2, 3)	(1, 1, 6)	(1, 2, 5)	(1, 3, 4)	(2, 2, 4)	(2, 3, 3)
等腰三角 形分布類 型	(3, 3, 1)	(1, 1, 5) $(3, 3, 1)$ $(2, 2, 3)$	(2, 2, 3)	(1, 1, 5)	(3, 3, 2)	(1, 1, 6) $(3, 3, 2)$	(2, 2, 4)	(1, 1, 6) (2, 2, 4) (3, 3, 2)	(1, 1, 6)
等腰三角	$1 \times 7 = 7$	$3 \times 7 = 21$	$1 \times 7 = 7$	$1 \times 7 = 7$	$1 \times 8 = 8$	2×8=16	$1 \times 8 = 8$	$3 \times 8 = 24$	$1 \times 8 = 8$
形的數量	個	個	個	個	個	個	個	個	個
總數		7+21+7+	-7=42 個			8+10	6+8+24+8=6	4個	

4. 正多邊形有三個黑點和等腰三角形分布類型之性質

- 總結以上圖表中所觀察到的現象,我們整理如下:
- (1) 黑點分布中有 2 就有 (1,1,n-2) ,有 4 就有 (2,2,n-4) ,有 6 就有 (3,3,n-6) ,以此類推,有 a 就有 $(\frac{a}{2},\frac{a}{2},n-a)$, 其中 a 為偶數 ,這跟之前兩個黑點的情況一致 。
- (2)每一組正n邊形中的等腰三角形分布類型都會有n個等腰三角形。
- (3)在正n 邊形黑點分布(a,b,c) 中,若任兩位數的和a+b 為偶數,則可拆解為 $(\frac{a+b}{2},\frac{a+b}{2},c)$,n=a+b+c。同理,若a+c、b+c 為偶數,那麼就可分別拆解為 $(\frac{a+c}{2},\frac{a+c}{2},b)$ 、 $(\frac{b+c}{2},\frac{b+c}{2},a)$ 。
- (4)在正n邊形黑點分布也為等腰三角形中,除了其中兩位數字和等於第三位數值的情況,是不存在跟黑點分布一樣的等腰三角形類型。圖示如下:

黑點分佈	圖示	黑點分佈	圖示	黑點分佈	圖示
(a,a,b)		(a,a,b)		(a,a,b)	
a+a+b=n n 為奇數	A a B	a+a+b=n n 為偶數	A B a C	a+a+b=n n 為偶數 且 a+a=b	
說明	圖形中只能由AC之間找到等腰三角形(5,5,3),而(3,3,7)類型的等腰三角形頂點被B點給佔據。	說明	圖形中只能由AC之間找到等腰三角形(4,4,6),而(3,3,8)類型的等腰三角形頂點給佔據。	說明	圖形中除了可以在AC之間找(6,6,4)外,還可以找到與黑點分布相同的(4,4,8)。

(5)在正n 邊形黑點分布為(a,a,a) 且a 為奇數的類型中,是完全沒有等腰三角形類型。圖示說明如下:

)在止11 遗形黑點分布 2	$oldsymbol{b}(u,u,u)$ 且 u 為句數的類型中,定完全沒有等腰二月形類型。圖示說明如下,
圖示	說明
A B	黒點分布 (a,a,a) ,且 a 為奇數 $\Rightarrow a+a$ 為偶數,原本應該有 $(\frac{a+a}{2},\frac{a+a}{2},a)$ 的等腰三角形類型,
	但紅色頂點的位置被最後一個黑點給佔據了。
A	黑點分布 (a,a,a) ,且 a 為偶數同上依然沒有 (a,a,a) 的等腰三角形類型,但因為邊數為偶數,
В	所以會有 $(\frac{a}{2},\frac{a}{2},n-a)$ 這類型的等腰三角形。

(四) 證明正多邊形有三個黑點的等腰三角形個數之公式

1. 由於原始資料過於龐大,請參閱作品說明書。在此只呈現正多邊形邊數為奇數之黑點分布個數與其相對應等腰三 角形類型組數表。

7 <u> </u>	•																								
邊數	3	等腰組數	5	等腰組數	7	等腰組數	9	等腰組數	11	等腰組數	13	等腰組數	15	等腰組數	17	等腰組數	19	等腰組數	21	等腰組數	23	等腰組數	25	等腰組數	固定開頭下 的組數規律
開頭1	0	0	2	2	3	5	4	8	5	11	6	14	7	17	8	20	9	23	10	26	11	29	12	32	1,3,3,,1
開頭2					1	1	2	4	3	7	4	10	5	13	6	16	7	19	8	22	9	25	10	28	1,3,,3
開頭3							1	0	2	2	3	5	4	8	5	11	6	14	7	17	8	20	9	23	1,3,3,,1
開頭4											1	1	2	4	3	7	4	10	5	13	6	16	7	19	1,3,,3
開頭5													1	0	2	2	3	5	4	8	5	11	6	14	1,3,3,,1
開頭6																	1	1	2	4	3	7	4	10	1,3,,3
開頭7																			1	0	2	2	3	5	1,3,3,,1
開頭8																							1	1	1,3,,3

公式為: $n(n-1)\times(2n+1)=n(n-1)(2n+1)$

2. 由於原始資料過於龐大,請參閱作品說明書。在此只呈現正多邊形邊數為偶數(不為4倍數)之黑點分布個數與其相對應等腰三角形類型組數表。

4	奴丹共和	判應	5 于 1	安二 .	円ル	類生	: 組要	义衣	0									
	邊數	6	等腰組數	10	等腰組數	14	等腰組數	18	等腰組數	22	等腰組數	26	等腰組數	30	等腰組數	34	等腰組數	固定開頭下 的組數規律
	開頭1	2	3	4	7	6	11	8	15	10	19	12	23	14	27	16	31	1,2,2,,2
	開頭2	1	1	3	8	5	16	7	24	9	32	11	40	13	48	15	56	3,2,6,,3
	開頭3			1	1	3	5	5	9	7	13	9	17	11	21	13	25	1,2,2,,2
	開頭4					2	4	4	12	6	20	8	28	10	36	12	44	3,2,6,,1
	開頭5							2	3	4	7	6	11	8	15	10	19	1,2,2,,2
	開頭6							1	1	3	8	5	16	7	24	9	32	3,2,6,,3
	開頭7									1	1	3	5	5	9	7	13	1,2,2,,2
	開頭8											2	4	4	12	6	20	3,2,6,,1
	開頭 9													2	3	4	7	1,2,2,,2
	開頭 10													1	1	3	8	3,2,6,,3
	開頭 11															1	1	1,2,2,,2

公式為 : $(2n)^2 \times (4n+2) = 8n^2 (2n+1)$

3. 由於原始資料過於龐大,請參閱作品說明書。在此只呈現正多邊形邊數為4倍數之黑點分布個數與 其相對應等腰三角形類型組數表。

邊數	4	等腰組數	8	等腰組數	12	等腰組數	16	等腰組數	20	等腰組數	24	等腰組數	28	等腰組數	32	等腰組數	36	等腰組數	40	等腰组數	44	等腰组數	48	等腰組數	固定開頭下 的組數規律
開頭1	1	1	3	4	5	8	7	12	9	16	11	20	13	24	15	28	17	32	19	36	21	40	23	44	1, 2, 2,, 1
開頭2			2	4	4	11	6	19	8	27	10	35	12	43	14	51	16	59	18	67	20	75	22	83	$3, 2, 6, \dots, 5, 1$
開頭3					2	3	4	6	6	10	8	14	10	18	12	22	14	26	16	30	18	34	20	38	$1, 2, \cdots, 1, 2$
開頭4					1	1	3	8	5	15	7	23	9	31	11	39	13	47	15	55	17	63	19	71	$3, 2, 6, \dots, 5, 2, 3$
開頭5							1	1	3	5	5	8	7	12	9	16	11	20	13	24	15	28	17	32	$1, 2, \dots, 1, 2, 2$
開頭6									2	4	4	12	6	19	8	27	10	35	12	43	14	51	16	59	$3, 2, 6, \dots, 5, 2, 6, 1$
開頭7											2	3	4	7	6	10	8	14	10	18	12	22	14	26	$1, 2, \dots, 1, 2, 2, 2$
開頭8											1	1	3	8	5	16	7	23	9	31	11	39	13	47	$3, 2, 6, \dots, 5, 2, 6, 2, 3$
開頭9													1	1	3	5	5	9	7	12	9	16	11	20	$1, 2, \dots, 1, 2, 2, 2, 2$
開頭 10															2	4	4	12	6	20	8	27	10	35	$3, 2, 6, \dots, 5, 2, 6, 2, 6, 1$
開頭 11																	2	3	4	7	6	11	8	14	1, 2,, 1, 2, 2, 2, 2, 2
開頭 12																	1	1	3	8	5	16	7	24	3, 2, 6,, 5, 2, 6, 2, 6, 2, 3
開頭 13																			1	1	ങ	5	5	9	1, 2,, 1, 2, 2, 2, 2, 2, 2
開頭 14																					2	4	4	12	$3, 2, 6, \dots, 5, 2, 6, 2, 6, 2, 6, 1$
開頭 15																							2	3	1, 2,, 1, 2, 2, 2, 2, 2, 2, 2
開頭 16																							1	1	3, 2, 6,, 5, 2, 6, 2, 6, 2, 6, 2, 3

由上表一樣可以發現大致有三大類,邊數為 $48 \times 36 \times 24 \times 12$; $44 \times 32 \times 20 \times 8$; $40 \times 28 \times 16 \times 4$,不過在同一類之間並不是像之前的數據會完全都一樣。比如在邊數 48 裏的等腰三角形組數中不再都是兩組等差數列,而是會隨著它們所在的組數不同有時公差要加 1。會造成這個公差差異是因為黑點在 (a,a,2a) 4 的倍數情況下等腰三角形組數會多 1 組,因此邊數除以 4 所在的等腰三角形組數公差會開始多 1。例如:邊數 20 中開頭 5 裏有一組 (5,5,10),因此相對應的公差就由原本為 -6 變成 -5 。另外還有 (a,a,a) 的情況之下,因為 a 為偶數,等腰三角形組數會有 1 組(原本是 0 組),則所在的等腰三角形組數公差會再多 1 。因此在證明的過程中就要去考慮若用同樣的公差算到底,那還需要加回幾個 1 。

公式為: $\frac{n^2-5n+8}{4} \times n$

研究結果、討論與結論

			120	. 4		
黑點個數	邊數n	等腰三角形個數	邊數n	等腰三角形個數	邊數n	等腰三角形個數
2	奇數	$\frac{n(n-1)}{2}$	偶數	$\frac{n(n-2)}{2}$		
3	奇數	$\frac{n(n-1)(n-3)}{4}$	偶數 (不為 4 倍數)	$\frac{n(n-2)^2}{4}$	偶數(4倍數)	$\frac{n^2 - 5n + 8}{4} \times n$

未來我們想嘗試 4 個黑點的研究,但因為其座標表示法會到四個變數,且很像還會有對稱性的問題,例如:黑點分布為(2,4,2,4)與(4,2,4,2)的圖形很像會有重複性問題,我們需要把問題與等腰三角形個數的計算方式再定義的更清楚才能往下研究,其複雜度應該會更高更難處理,所以我們就想把這個問題留到之後再單獨做研究,可能除了我們新創的座標表示法之外還需要有更創新的想法才行得通。

參考資料及其他

一、游森棚(民 108 年 2 月)。森棚教官的數學題-七邊型之謎。科學研習期刊,58-2。取自 https://www.ntsec.edu.tw/LiveSupply-Content.aspx?cat=6842&a=6829&fld=&key=&isd=1&icop=10&p=1&lsid=15533

二、張幼賢(2013)。國中數學第四冊。翰林出版社,107年2月3版